This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Simplifies reuxfr1d . (Contributed by Zhi Wang, 20-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuxfr1dd.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| reuxfr1dd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
| reuxfr1dd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | reuxfr1dd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfr1dd.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| 2 | reuxfr1dd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 3 | reuxfr1dd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | reurex | ⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 5 | 2 4 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 6 | 5 | biantrurd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 7 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ) | |
| 8 | 3 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ∧ 𝜓 ) ↔ ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ∧ 𝜒 ) ) ) |
| 9 | anass | ⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) | |
| 10 | anass | ⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ∧ 𝜒 ) ↔ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) | |
| 11 | 8 9 10 | 3bitr3g | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) ) |
| 12 | 11 | rexbidv2 | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 13 | 7 12 | bitr3id | ⊢ ( 𝜑 → ( ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 15 | 6 14 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 16 | 15 | reubidva | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 17 | reurmo | ⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 18 | 2 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 19 | 1 18 | reuxfrd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
| 20 | 16 19 | bitrd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |