This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| upfval.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| upfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| upfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| upfval.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| upfval2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | ||
| upfval3.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| isup.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| isup.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | ||
| Assertion | isup | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | upfval.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | upfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | upfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | upfval.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 6 | upfval2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | |
| 7 | upfval3.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 8 | isup.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | isup.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | |
| 10 | 8 9 | jca | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 11 | 1 2 3 4 5 6 7 | isuplem | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) ) |
| 12 | 10 11 | mpbirand | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |