This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate an hypothesis th in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bibiad.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) | |
| bibiad.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | ||
| bibiad.3 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | bibiad | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibiad.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) | |
| 2 | bibiad.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | bibiad.3 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
| 6 | 3 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) → 𝜒 ) |
| 7 | 4 1 5 6 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
| 8 | simpl | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜑 ) | |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜒 ) | |
| 10 | 3 | biimpar | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) → 𝜓 ) |
| 11 | 8 2 9 10 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜓 ) |
| 12 | 7 11 | impbida | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |