This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of unxpdom . (Contributed by NM, 16-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unxpdom2 | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 3 | 2 | adantr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ∈ V ) |
| 4 | 1onn | ⊢ 1o ∈ ω | |
| 5 | xpsneng | ⊢ ( ( 𝐴 ∈ V ∧ 1o ∈ ω ) → ( 𝐴 × { 1o } ) ≈ 𝐴 ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × { 1o } ) ≈ 𝐴 ) |
| 7 | 6 | ensymd | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ ( 𝐴 × { 1o } ) ) |
| 8 | endom | ⊢ ( 𝐴 ≈ ( 𝐴 × { 1o } ) → 𝐴 ≼ ( 𝐴 × { 1o } ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≼ ( 𝐴 × { 1o } ) ) |
| 10 | simpr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ≼ 𝐴 ) | |
| 11 | 0ex | ⊢ ∅ ∈ V | |
| 12 | xpsneng | ⊢ ( ( 𝐴 ∈ V ∧ ∅ ∈ V ) → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) | |
| 13 | 3 11 12 | sylancl | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) |
| 14 | 13 | ensymd | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ ( 𝐴 × { ∅ } ) ) |
| 15 | domentr | ⊢ ( ( 𝐵 ≼ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { ∅ } ) ) → 𝐵 ≼ ( 𝐴 × { ∅ } ) ) | |
| 16 | 10 14 15 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ≼ ( 𝐴 × { ∅ } ) ) |
| 17 | 1n0 | ⊢ 1o ≠ ∅ | |
| 18 | xpsndisj | ⊢ ( 1o ≠ ∅ → ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) | |
| 19 | 17 18 | mp1i | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) |
| 20 | undom | ⊢ ( ( ( 𝐴 ≼ ( 𝐴 × { 1o } ) ∧ 𝐵 ≼ ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ) | |
| 21 | 9 16 19 20 | syl21anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ) |
| 22 | sdomentr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { 1o } ) ) → 1o ≺ ( 𝐴 × { 1o } ) ) | |
| 23 | 7 22 | syldan | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 1o ≺ ( 𝐴 × { 1o } ) ) |
| 24 | sdomentr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { ∅ } ) ) → 1o ≺ ( 𝐴 × { ∅ } ) ) | |
| 25 | 14 24 | syldan | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 1o ≺ ( 𝐴 × { ∅ } ) ) |
| 26 | unxpdom | ⊢ ( ( 1o ≺ ( 𝐴 × { 1o } ) ∧ 1o ≺ ( 𝐴 × { ∅ } ) ) → ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) | |
| 27 | 23 25 26 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) |
| 28 | xpen | ⊢ ( ( ( 𝐴 × { 1o } ) ≈ 𝐴 ∧ ( 𝐴 × { ∅ } ) ≈ 𝐴 ) → ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) | |
| 29 | 6 13 28 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) |
| 30 | domentr | ⊢ ( ( ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) → ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( 𝐴 × 𝐴 ) ) |
| 32 | domtr | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( 𝐴 × 𝐴 ) ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 33 | 21 31 32 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) |