This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 13-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unxpdom | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 3 | 1 | brrelex2i | ⊢ ( 1o ≺ 𝐵 → 𝐵 ∈ V ) |
| 4 | 2 3 | anim12i | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 5 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 1o ≺ 𝑥 ↔ 1o ≺ 𝐴 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 1o ≺ 𝑥 ∧ 1o ≺ 𝑦 ) ↔ ( 1o ≺ 𝐴 ∧ 1o ≺ 𝑦 ) ) ) |
| 7 | uneq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝑦 ) ) | |
| 8 | xpeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 × 𝑦 ) = ( 𝐴 × 𝑦 ) ) | |
| 9 | 7 8 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∪ 𝑦 ) ≼ ( 𝑥 × 𝑦 ) ↔ ( 𝐴 ∪ 𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) ) |
| 10 | 6 9 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 1o ≺ 𝑥 ∧ 1o ≺ 𝑦 ) → ( 𝑥 ∪ 𝑦 ) ≼ ( 𝑥 × 𝑦 ) ) ↔ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝑦 ) → ( 𝐴 ∪ 𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) ) ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 1o ≺ 𝑦 ↔ 1o ≺ 𝐵 ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝑦 ) ↔ ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) ) ) |
| 13 | uneq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) | |
| 14 | xpeq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 × 𝑦 ) = ( 𝐴 × 𝐵 ) ) | |
| 15 | 13 14 | breq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∪ 𝑦 ) ≼ ( 𝐴 × 𝑦 ) ↔ ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) ) |
| 16 | 12 15 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝑦 ) → ( 𝐴 ∪ 𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) ↔ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) ) ) |
| 17 | eqid | ⊢ ( 𝑧 ∈ ( 𝑥 ∪ 𝑦 ) ↦ if ( 𝑧 ∈ 𝑥 , 〈 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) 〉 , 〈 if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 〉 ) ) = ( 𝑧 ∈ ( 𝑥 ∪ 𝑦 ) ↦ if ( 𝑧 ∈ 𝑥 , 〈 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) 〉 , 〈 if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 〉 ) ) | |
| 18 | eqid | ⊢ if ( 𝑧 ∈ 𝑥 , 〈 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) 〉 , 〈 if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 〉 ) = if ( 𝑧 ∈ 𝑥 , 〈 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) 〉 , 〈 if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 〉 ) | |
| 19 | 17 18 | unxpdomlem3 | ⊢ ( ( 1o ≺ 𝑥 ∧ 1o ≺ 𝑦 ) → ( 𝑥 ∪ 𝑦 ) ≼ ( 𝑥 × 𝑦 ) ) |
| 20 | 10 16 19 | vtocl2g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) ) |
| 21 | 4 20 | mpcom | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |