This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of TakeutiZaring p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004) (Proof shortened by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucxpdom | ⊢ ( 1o ≺ 𝐴 → suc 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 2 | relsdom | ⊢ Rel ≺ | |
| 3 | 2 | brrelex2i | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 4 | 1on | ⊢ 1o ∈ On | |
| 5 | xpsneng | ⊢ ( ( 𝐴 ∈ V ∧ 1o ∈ On ) → ( 𝐴 × { 1o } ) ≈ 𝐴 ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 × { 1o } ) ≈ 𝐴 ) |
| 7 | 6 | ensymd | ⊢ ( 1o ≺ 𝐴 → 𝐴 ≈ ( 𝐴 × { 1o } ) ) |
| 8 | endom | ⊢ ( 𝐴 ≈ ( 𝐴 × { 1o } ) → 𝐴 ≼ ( 𝐴 × { 1o } ) ) | |
| 9 | 7 8 | syl | ⊢ ( 1o ≺ 𝐴 → 𝐴 ≼ ( 𝐴 × { 1o } ) ) |
| 10 | ensn1g | ⊢ ( 𝐴 ∈ V → { 𝐴 } ≈ 1o ) | |
| 11 | 3 10 | syl | ⊢ ( 1o ≺ 𝐴 → { 𝐴 } ≈ 1o ) |
| 12 | ensdomtr | ⊢ ( ( { 𝐴 } ≈ 1o ∧ 1o ≺ 𝐴 ) → { 𝐴 } ≺ 𝐴 ) | |
| 13 | 11 12 | mpancom | ⊢ ( 1o ≺ 𝐴 → { 𝐴 } ≺ 𝐴 ) |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | xpsneng | ⊢ ( ( 𝐴 ∈ V ∧ ∅ ∈ V ) → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) | |
| 16 | 3 14 15 | sylancl | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) |
| 17 | 16 | ensymd | ⊢ ( 1o ≺ 𝐴 → 𝐴 ≈ ( 𝐴 × { ∅ } ) ) |
| 18 | sdomentr | ⊢ ( ( { 𝐴 } ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { ∅ } ) ) → { 𝐴 } ≺ ( 𝐴 × { ∅ } ) ) | |
| 19 | 13 17 18 | syl2anc | ⊢ ( 1o ≺ 𝐴 → { 𝐴 } ≺ ( 𝐴 × { ∅ } ) ) |
| 20 | sdomdom | ⊢ ( { 𝐴 } ≺ ( 𝐴 × { ∅ } ) → { 𝐴 } ≼ ( 𝐴 × { ∅ } ) ) | |
| 21 | 19 20 | syl | ⊢ ( 1o ≺ 𝐴 → { 𝐴 } ≼ ( 𝐴 × { ∅ } ) ) |
| 22 | 1n0 | ⊢ 1o ≠ ∅ | |
| 23 | xpsndisj | ⊢ ( 1o ≠ ∅ → ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) | |
| 24 | 22 23 | mp1i | ⊢ ( 1o ≺ 𝐴 → ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) |
| 25 | undom | ⊢ ( ( ( 𝐴 ≼ ( 𝐴 × { 1o } ) ∧ { 𝐴 } ≼ ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ) | |
| 26 | 9 21 24 25 | syl21anc | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ) |
| 27 | sdomentr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { 1o } ) ) → 1o ≺ ( 𝐴 × { 1o } ) ) | |
| 28 | 7 27 | mpdan | ⊢ ( 1o ≺ 𝐴 → 1o ≺ ( 𝐴 × { 1o } ) ) |
| 29 | sdomentr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { ∅ } ) ) → 1o ≺ ( 𝐴 × { ∅ } ) ) | |
| 30 | 17 29 | mpdan | ⊢ ( 1o ≺ 𝐴 → 1o ≺ ( 𝐴 × { ∅ } ) ) |
| 31 | unxpdom | ⊢ ( ( 1o ≺ ( 𝐴 × { 1o } ) ∧ 1o ≺ ( 𝐴 × { ∅ } ) ) → ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) | |
| 32 | 28 30 31 | syl2anc | ⊢ ( 1o ≺ 𝐴 → ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) |
| 33 | domtr | ⊢ ( ( ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) | |
| 34 | 26 32 33 | syl2anc | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) |
| 35 | xpen | ⊢ ( ( ( 𝐴 × { 1o } ) ≈ 𝐴 ∧ ( 𝐴 × { ∅ } ) ≈ 𝐴 ) → ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) | |
| 36 | 6 16 35 | syl2anc | ⊢ ( 1o ≺ 𝐴 → ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) |
| 37 | domentr | ⊢ ( ( ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) → ( 𝐴 ∪ { 𝐴 } ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 38 | 34 36 37 | syl2anc | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ∪ { 𝐴 } ) ≼ ( 𝐴 × 𝐴 ) ) |
| 39 | 1 38 | eqbrtrid | ⊢ ( 1o ≺ 𝐴 → suc 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |