This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of unxpdom . (Contributed by NM, 16-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unxpdom2 | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( A X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | |- Rel ~< |
|
| 2 | 1 | brrelex2i | |- ( 1o ~< A -> A e. _V ) |
| 3 | 2 | adantr | |- ( ( 1o ~< A /\ B ~<_ A ) -> A e. _V ) |
| 4 | 1onn | |- 1o e. _om |
|
| 5 | xpsneng | |- ( ( A e. _V /\ 1o e. _om ) -> ( A X. { 1o } ) ~~ A ) |
|
| 6 | 3 4 5 | sylancl | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( A X. { 1o } ) ~~ A ) |
| 7 | 6 | ensymd | |- ( ( 1o ~< A /\ B ~<_ A ) -> A ~~ ( A X. { 1o } ) ) |
| 8 | endom | |- ( A ~~ ( A X. { 1o } ) -> A ~<_ ( A X. { 1o } ) ) |
|
| 9 | 7 8 | syl | |- ( ( 1o ~< A /\ B ~<_ A ) -> A ~<_ ( A X. { 1o } ) ) |
| 10 | simpr | |- ( ( 1o ~< A /\ B ~<_ A ) -> B ~<_ A ) |
|
| 11 | 0ex | |- (/) e. _V |
|
| 12 | xpsneng | |- ( ( A e. _V /\ (/) e. _V ) -> ( A X. { (/) } ) ~~ A ) |
|
| 13 | 3 11 12 | sylancl | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( A X. { (/) } ) ~~ A ) |
| 14 | 13 | ensymd | |- ( ( 1o ~< A /\ B ~<_ A ) -> A ~~ ( A X. { (/) } ) ) |
| 15 | domentr | |- ( ( B ~<_ A /\ A ~~ ( A X. { (/) } ) ) -> B ~<_ ( A X. { (/) } ) ) |
|
| 16 | 10 14 15 | syl2anc | |- ( ( 1o ~< A /\ B ~<_ A ) -> B ~<_ ( A X. { (/) } ) ) |
| 17 | 1n0 | |- 1o =/= (/) |
|
| 18 | xpsndisj | |- ( 1o =/= (/) -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
|
| 19 | 17 18 | mp1i | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
| 20 | undom | |- ( ( ( A ~<_ ( A X. { 1o } ) /\ B ~<_ ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) -> ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
|
| 21 | 9 16 19 20 | syl21anc | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
| 22 | sdomentr | |- ( ( 1o ~< A /\ A ~~ ( A X. { 1o } ) ) -> 1o ~< ( A X. { 1o } ) ) |
|
| 23 | 7 22 | syldan | |- ( ( 1o ~< A /\ B ~<_ A ) -> 1o ~< ( A X. { 1o } ) ) |
| 24 | sdomentr | |- ( ( 1o ~< A /\ A ~~ ( A X. { (/) } ) ) -> 1o ~< ( A X. { (/) } ) ) |
|
| 25 | 14 24 | syldan | |- ( ( 1o ~< A /\ B ~<_ A ) -> 1o ~< ( A X. { (/) } ) ) |
| 26 | unxpdom | |- ( ( 1o ~< ( A X. { 1o } ) /\ 1o ~< ( A X. { (/) } ) ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
|
| 27 | 23 25 26 | syl2anc | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
| 28 | xpen | |- ( ( ( A X. { 1o } ) ~~ A /\ ( A X. { (/) } ) ~~ A ) -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
|
| 29 | 6 13 28 | syl2anc | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
| 30 | domentr | |- ( ( ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) |
|
| 31 | 27 29 30 | syl2anc | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) |
| 32 | domtr | |- ( ( ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) -> ( A u. B ) ~<_ ( A X. A ) ) |
|
| 33 | 21 31 32 | syl2anc | |- ( ( 1o ~< A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( A X. A ) ) |