This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitnegcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitnegcl.2 | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| Assertion | unitnegcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitnegcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitnegcl.2 | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 3 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑅 ∈ Ring ) | |
| 4 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 5 1 | unitcl | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 7 | 5 2 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 8 | 4 6 7 | syl2an | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 9 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 10 | 5 9 2 | dvdsrneg | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 11 | 8 10 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 12 | 5 2 | grpinvinv | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 13 | 4 6 12 | syl2an | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 14 | 11 13 | breqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) 𝑋 ) |
| 15 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) | |
| 16 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 17 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 18 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 19 | 1 16 9 17 18 | isunit | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 20 | 15 19 | sylib | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 21 | 20 | simpld | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 22 | 5 9 | dvdsrtr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) 𝑋 ∧ 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 23 | 3 14 21 22 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 24 | 17 | opprring | ⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 26 | 17 5 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 27 | 17 2 | opprneg | ⊢ 𝑁 = ( invg ‘ ( oppr ‘ 𝑅 ) ) |
| 28 | 26 18 27 | dvdsrneg | ⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 29 | 25 8 28 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 30 | 29 13 | breqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) |
| 31 | 20 | simprd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 32 | 26 18 | dvdsrtr | ⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 33 | 25 30 31 32 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 34 | 1 16 9 17 18 | isunit | ⊢ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝑈 ↔ ( ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 35 | 23 33 34 | sylanbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑈 ) |