This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringunitnzdiv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringunitnzdiv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ringunitnzdiv.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringunitnzdiv.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringunitnzdiv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ringunitnzdiv.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Unit ‘ 𝑅 ) ) | ||
| Assertion | ringunitnzdiv | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringunitnzdiv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringunitnzdiv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | ringunitnzdiv.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | ringunitnzdiv.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | ringunitnzdiv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | ringunitnzdiv.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Unit ‘ 𝑅 ) ) | |
| 7 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 9 | 1 8 | unitcl | ⊢ ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → 𝑋 ∈ 𝐵 ) |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 11 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 12 | 8 11 1 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 | 4 6 12 | syl2anc | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 | oveq1 | ⊢ ( 𝑒 = ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) → ( 𝑒 · 𝑋 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑒 = ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) → ( ( 𝑒 · 𝑋 ) = ( 1r ‘ 𝑅 ) ↔ ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑒 = ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ) → ( ( 𝑒 · 𝑋 ) = ( 1r ‘ 𝑅 ) ↔ ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) ) |
| 17 | 8 11 3 7 | unitlinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 18 | 4 6 17 | syl2anc | ⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 19 | 13 16 18 | rspcedvd | ⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ( 𝑒 · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 20 | 1 3 7 2 4 10 19 5 | ringinvnzdiv | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |