This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| Assertion | dvdsrtr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) → 𝑌 ∥ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 4 | 1 2 3 | dvdsr | ⊢ ( 𝑌 ∥ 𝑍 ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ) ) |
| 5 | 1 2 3 | dvdsr | ⊢ ( 𝑍 ∥ 𝑋 ↔ ( 𝑍 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) |
| 6 | 4 5 | anbi12i | ⊢ ( ( 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) ↔ ( ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ) ∧ ( 𝑍 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) ) |
| 7 | an4 | ⊢ ( ( ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ) ∧ ( 𝑍 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) ↔ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) ↔ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) ) |
| 9 | reeanv | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) | |
| 10 | simplrl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 11 | simpll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) | |
| 12 | simprr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 13 | simprl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 14 | 1 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 15 | 11 12 13 14 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 16 | 1 2 3 | dvdsrmul | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) → 𝑌 ∥ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 17 | 10 15 16 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑌 ∥ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 18 | 1 3 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑌 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
| 19 | 11 12 13 10 18 | syl13anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑌 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
| 20 | 17 19 | breqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑌 ∥ ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
| 21 | oveq2 | ⊢ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) ) | |
| 22 | id | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) | |
| 23 | 21 22 | sylan9eq | ⊢ ( ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) = 𝑋 ) |
| 24 | 23 | breq2d | ⊢ ( ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → ( 𝑌 ∥ ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) ↔ 𝑌 ∥ 𝑋 ) ) |
| 25 | 20 24 | syl5ibcom | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → 𝑌 ∥ 𝑋 ) ) |
| 26 | 25 | rexlimdvva | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → 𝑌 ∥ 𝑋 ) ) |
| 27 | 9 26 | biimtrrid | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → 𝑌 ∥ 𝑋 ) ) |
| 28 | 27 | expimpd | ⊢ ( 𝑅 ∈ Ring → ( ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) → 𝑌 ∥ 𝑋 ) ) |
| 29 | 8 28 | biimtrid | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) → 𝑌 ∥ 𝑋 ) ) |
| 30 | 29 | 3impib | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) → 𝑌 ∥ 𝑋 ) |