This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitnegcl.1 | |- U = ( Unit ` R ) |
|
| unitnegcl.2 | |- N = ( invg ` R ) |
||
| Assertion | unitnegcl | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitnegcl.1 | |- U = ( Unit ` R ) |
|
| 2 | unitnegcl.2 | |- N = ( invg ` R ) |
|
| 3 | simpl | |- ( ( R e. Ring /\ X e. U ) -> R e. Ring ) |
|
| 4 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 1 | unitcl | |- ( X e. U -> X e. ( Base ` R ) ) |
| 7 | 5 2 | grpinvcl | |- ( ( R e. Grp /\ X e. ( Base ` R ) ) -> ( N ` X ) e. ( Base ` R ) ) |
| 8 | 4 6 7 | syl2an | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) e. ( Base ` R ) ) |
| 9 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 10 | 5 9 2 | dvdsrneg | |- ( ( R e. Ring /\ ( N ` X ) e. ( Base ` R ) ) -> ( N ` X ) ( ||r ` R ) ( N ` ( N ` X ) ) ) |
| 11 | 8 10 | syldan | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) ( N ` ( N ` X ) ) ) |
| 12 | 5 2 | grpinvinv | |- ( ( R e. Grp /\ X e. ( Base ` R ) ) -> ( N ` ( N ` X ) ) = X ) |
| 13 | 4 6 12 | syl2an | |- ( ( R e. Ring /\ X e. U ) -> ( N ` ( N ` X ) ) = X ) |
| 14 | 11 13 | breqtrd | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) X ) |
| 15 | simpr | |- ( ( R e. Ring /\ X e. U ) -> X e. U ) |
|
| 16 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 17 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 18 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 19 | 1 16 9 17 18 | isunit | |- ( X e. U <-> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 20 | 15 19 | sylib | |- ( ( R e. Ring /\ X e. U ) -> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 21 | 20 | simpld | |- ( ( R e. Ring /\ X e. U ) -> X ( ||r ` R ) ( 1r ` R ) ) |
| 22 | 5 9 | dvdsrtr | |- ( ( R e. Ring /\ ( N ` X ) ( ||r ` R ) X /\ X ( ||r ` R ) ( 1r ` R ) ) -> ( N ` X ) ( ||r ` R ) ( 1r ` R ) ) |
| 23 | 3 14 21 22 | syl3anc | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) ( 1r ` R ) ) |
| 24 | 17 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 25 | 24 | adantr | |- ( ( R e. Ring /\ X e. U ) -> ( oppR ` R ) e. Ring ) |
| 26 | 17 5 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 27 | 17 2 | opprneg | |- N = ( invg ` ( oppR ` R ) ) |
| 28 | 26 18 27 | dvdsrneg | |- ( ( ( oppR ` R ) e. Ring /\ ( N ` X ) e. ( Base ` R ) ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( N ` ( N ` X ) ) ) |
| 29 | 25 8 28 | syl2anc | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( N ` ( N ` X ) ) ) |
| 30 | 29 13 | breqtrd | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) X ) |
| 31 | 20 | simprd | |- ( ( R e. Ring /\ X e. U ) -> X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 32 | 26 18 | dvdsrtr | |- ( ( ( oppR ` R ) e. Ring /\ ( N ` X ) ( ||r ` ( oppR ` R ) ) X /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 33 | 25 30 31 32 | syl3anc | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 34 | 1 16 9 17 18 | isunit | |- ( ( N ` X ) e. U <-> ( ( N ` X ) ( ||r ` R ) ( 1r ` R ) /\ ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 35 | 23 33 34 | sylanbrc | |- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) e. U ) |