This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| dvdsrneg.5 | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| Assertion | dvdsrneg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( 𝑁 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | dvdsrneg.5 | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 4 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
| 5 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 6 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 7 | 1 6 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 8 | 1 3 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 9 | 5 7 8 | syl2anc | ⊢ ( 𝑅 ∈ Ring → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 11 | 1 2 10 | dvdsrmul | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → 𝑋 ∥ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 12 | 4 9 11 | syl2anr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 13 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 14 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 15 | 1 10 6 3 13 14 | ringnegl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 16 | 12 15 | breqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( 𝑁 ‘ 𝑋 ) ) |