This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element A ), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffixfr | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) | |
| 2 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 5 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 6 | intssuni | ⊢ ( 𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹 ) | |
| 7 | 2 5 6 | 3syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
| 8 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 9 | 2 8 | syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 10 | 7 9 | sseqtrd | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ 𝑋 ) |
| 11 | 10 | sselda | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐴 ∈ 𝑋 ) |
| 12 | uffix | ⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝐴 ∈ 𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) | |
| 13 | 4 11 12 | syl2an2r | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) |
| 14 | 13 | simprd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) |
| 15 | 13 | simpld | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ) |
| 16 | fgcl | ⊢ ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 18 | 14 17 | eqeltrd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ) |
| 19 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 20 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 22 | elintg | ⊢ ( 𝐴 ∈ ∩ 𝐹 → ( 𝐴 ∈ ∩ 𝐹 ↔ ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) ) | |
| 23 | 22 | ibi | ⊢ ( 𝐴 ∈ ∩ 𝐹 → ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) |
| 25 | ssrab | ⊢ ( 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) ) | |
| 26 | 21 24 25 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 27 | ufilmax | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) | |
| 28 | 1 18 26 27 | syl3anc | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 29 | eqimss | ⊢ ( 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 31 | 25 | simprbi | ⊢ ( 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } → ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) |
| 32 | 30 31 | syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) |
| 33 | eleq2 | ⊢ ( 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } → ( 𝑋 ∈ 𝐹 ↔ 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) | |
| 34 | 33 | biimpac | ⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 35 | 4 34 | sylan | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 36 | eleq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑋 ) ) | |
| 37 | 36 | elrab | ⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑋 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 38 | 37 | simprbi | ⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } → 𝐴 ∈ 𝑋 ) |
| 39 | elintg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ∩ 𝐹 ↔ ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) ) | |
| 40 | 35 38 39 | 3syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → ( 𝐴 ∈ ∩ 𝐹 ↔ ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) ) |
| 41 | 32 40 | mpbird | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝐴 ∈ ∩ 𝐹 ) |
| 42 | 28 41 | impbida | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) |