This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element A ), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffixfr | |- ( F e. ( UFil ` X ) -> ( A e. |^| F <-> F = { x e. ~P X | A e. x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> F e. ( UFil ` X ) ) |
|
| 2 | ufilfil | |- ( F e. ( UFil ` X ) -> F e. ( Fil ` X ) ) |
|
| 3 | filtop | |- ( F e. ( Fil ` X ) -> X e. F ) |
|
| 4 | 2 3 | syl | |- ( F e. ( UFil ` X ) -> X e. F ) |
| 5 | filn0 | |- ( F e. ( Fil ` X ) -> F =/= (/) ) |
|
| 6 | intssuni | |- ( F =/= (/) -> |^| F C_ U. F ) |
|
| 7 | 2 5 6 | 3syl | |- ( F e. ( UFil ` X ) -> |^| F C_ U. F ) |
| 8 | filunibas | |- ( F e. ( Fil ` X ) -> U. F = X ) |
|
| 9 | 2 8 | syl | |- ( F e. ( UFil ` X ) -> U. F = X ) |
| 10 | 7 9 | sseqtrd | |- ( F e. ( UFil ` X ) -> |^| F C_ X ) |
| 11 | 10 | sselda | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> A e. X ) |
| 12 | uffix | |- ( ( X e. F /\ A e. X ) -> ( { { A } } e. ( fBas ` X ) /\ { x e. ~P X | A e. x } = ( X filGen { { A } } ) ) ) |
|
| 13 | 4 11 12 | syl2an2r | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> ( { { A } } e. ( fBas ` X ) /\ { x e. ~P X | A e. x } = ( X filGen { { A } } ) ) ) |
| 14 | 13 | simprd | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> { x e. ~P X | A e. x } = ( X filGen { { A } } ) ) |
| 15 | 13 | simpld | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> { { A } } e. ( fBas ` X ) ) |
| 16 | fgcl | |- ( { { A } } e. ( fBas ` X ) -> ( X filGen { { A } } ) e. ( Fil ` X ) ) |
|
| 17 | 15 16 | syl | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> ( X filGen { { A } } ) e. ( Fil ` X ) ) |
| 18 | 14 17 | eqeltrd | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> { x e. ~P X | A e. x } e. ( Fil ` X ) ) |
| 19 | 2 | adantr | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> F e. ( Fil ` X ) ) |
| 20 | filsspw | |- ( F e. ( Fil ` X ) -> F C_ ~P X ) |
|
| 21 | 19 20 | syl | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> F C_ ~P X ) |
| 22 | elintg | |- ( A e. |^| F -> ( A e. |^| F <-> A. x e. F A e. x ) ) |
|
| 23 | 22 | ibi | |- ( A e. |^| F -> A. x e. F A e. x ) |
| 24 | 23 | adantl | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> A. x e. F A e. x ) |
| 25 | ssrab | |- ( F C_ { x e. ~P X | A e. x } <-> ( F C_ ~P X /\ A. x e. F A e. x ) ) |
|
| 26 | 21 24 25 | sylanbrc | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> F C_ { x e. ~P X | A e. x } ) |
| 27 | ufilmax | |- ( ( F e. ( UFil ` X ) /\ { x e. ~P X | A e. x } e. ( Fil ` X ) /\ F C_ { x e. ~P X | A e. x } ) -> F = { x e. ~P X | A e. x } ) |
|
| 28 | 1 18 26 27 | syl3anc | |- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> F = { x e. ~P X | A e. x } ) |
| 29 | eqimss | |- ( F = { x e. ~P X | A e. x } -> F C_ { x e. ~P X | A e. x } ) |
|
| 30 | 29 | adantl | |- ( ( F e. ( UFil ` X ) /\ F = { x e. ~P X | A e. x } ) -> F C_ { x e. ~P X | A e. x } ) |
| 31 | 25 | simprbi | |- ( F C_ { x e. ~P X | A e. x } -> A. x e. F A e. x ) |
| 32 | 30 31 | syl | |- ( ( F e. ( UFil ` X ) /\ F = { x e. ~P X | A e. x } ) -> A. x e. F A e. x ) |
| 33 | eleq2 | |- ( F = { x e. ~P X | A e. x } -> ( X e. F <-> X e. { x e. ~P X | A e. x } ) ) |
|
| 34 | 33 | biimpac | |- ( ( X e. F /\ F = { x e. ~P X | A e. x } ) -> X e. { x e. ~P X | A e. x } ) |
| 35 | 4 34 | sylan | |- ( ( F e. ( UFil ` X ) /\ F = { x e. ~P X | A e. x } ) -> X e. { x e. ~P X | A e. x } ) |
| 36 | eleq2 | |- ( x = X -> ( A e. x <-> A e. X ) ) |
|
| 37 | 36 | elrab | |- ( X e. { x e. ~P X | A e. x } <-> ( X e. ~P X /\ A e. X ) ) |
| 38 | 37 | simprbi | |- ( X e. { x e. ~P X | A e. x } -> A e. X ) |
| 39 | elintg | |- ( A e. X -> ( A e. |^| F <-> A. x e. F A e. x ) ) |
|
| 40 | 35 38 39 | 3syl | |- ( ( F e. ( UFil ` X ) /\ F = { x e. ~P X | A e. x } ) -> ( A e. |^| F <-> A. x e. F A e. x ) ) |
| 41 | 32 40 | mpbird | |- ( ( F e. ( UFil ` X ) /\ F = { x e. ~P X | A e. x } ) -> A e. |^| F ) |
| 42 | 28 41 | impbida | |- ( F e. ( UFil ` X ) -> ( A e. |^| F <-> F = { x e. ~P X | A e. x } ) ) |