This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffix2 | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 3 | intssuni | ⊢ ( 𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹 ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
| 5 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 6 | 1 5 | syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 7 | 4 6 | sseqtrd | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ 𝑋 ) |
| 8 | 7 | sseld | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 → 𝑥 ∈ 𝑋 ) ) |
| 9 | 8 | pm4.71rd | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹 ) ) ) |
| 10 | uffixfr | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 ↔ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) | |
| 11 | 10 | anbi2d | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 12 | 9 11 | bitrd | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 13 | 12 | exbidv | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 ∈ ∩ 𝐹 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑋 ∧ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 14 | n0 | ⊢ ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ∩ 𝐹 ) | |
| 15 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑋 ∧ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) | |
| 16 | 13 14 15 | 3bitr4g | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) |