This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an operator is an extended real. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoxr.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoxr.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoxr.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| Assertion | nmoxr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoxr.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoxr.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoxr.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 4 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 6 | 1 2 4 5 3 | nmooval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 7 | 2 5 | nmosetre | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) |
| 8 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 9 | 7 8 | sstrdi | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* ) |
| 10 | supxrcl | ⊢ ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ∈ ℝ* ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 13 | 6 12 | eqeltrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |