This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an operator is greater than minus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoxr.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoxr.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoxr.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| Assertion | nmogtmnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoxr.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoxr.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoxr.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 4 | 1 2 3 | nmorepnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) ≠ +∞ ) ) |
| 5 | df-ne | ⊢ ( ( 𝑁 ‘ 𝑇 ) ≠ +∞ ↔ ¬ ( 𝑁 ‘ 𝑇 ) = +∞ ) | |
| 6 | 4 5 | bitrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( 𝑁 ‘ 𝑇 ) = +∞ ) ) |
| 7 | xor3 | ⊢ ( ¬ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) = +∞ ) ↔ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( 𝑁 ‘ 𝑇 ) = +∞ ) ) | |
| 8 | nbior | ⊢ ( ¬ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) = +∞ ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝑇 ) = +∞ ) ) | |
| 9 | 7 8 | sylbir | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( 𝑁 ‘ 𝑇 ) = +∞ ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝑇 ) = +∞ ) ) |
| 10 | mnfltxr | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝑇 ) = +∞ ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) | |
| 11 | 6 9 10 | 3syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) |