This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of F at a successor ordinal. Part 2 of Theorem 7.44 of TakeutiZaring p. 49. (Contributed by NM, 23-Apr-1995) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz7.44.1 | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) | |
| tz7.44.2 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) | ||
| tz7.44.3 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ↾ 𝑦 ) ∈ V ) | ||
| tz7.44.4 | ⊢ 𝐹 Fn 𝑋 | ||
| tz7.44.5 | ⊢ Ord 𝑋 | ||
| Assertion | tz7.44-2 | ⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐹 ‘ suc 𝐵 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.44.1 | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) | |
| 2 | tz7.44.2 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) | |
| 3 | tz7.44.3 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ↾ 𝑦 ) ∈ V ) | |
| 4 | tz7.44.4 | ⊢ 𝐹 Fn 𝑋 | |
| 5 | tz7.44.5 | ⊢ Ord 𝑋 | |
| 6 | fveq2 | ⊢ ( 𝑦 = suc 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ suc 𝐵 ) ) | |
| 7 | reseq2 | ⊢ ( 𝑦 = suc 𝐵 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ suc 𝐵 ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑦 = suc 𝐵 → ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) = ( 𝐺 ‘ ( 𝐹 ↾ suc 𝐵 ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝑦 = suc 𝐵 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ↔ ( 𝐹 ‘ suc 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ suc 𝐵 ) ) ) ) |
| 10 | 9 2 | vtoclga | ⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐹 ‘ suc 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ suc 𝐵 ) ) ) |
| 11 | eqeq1 | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( 𝑥 = ∅ ↔ ( 𝐹 ↾ suc 𝐵 ) = ∅ ) ) | |
| 12 | dmeq | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → dom 𝑥 = dom ( 𝐹 ↾ suc 𝐵 ) ) | |
| 13 | limeq | ⊢ ( dom 𝑥 = dom ( 𝐹 ↾ suc 𝐵 ) → ( Lim dom 𝑥 ↔ Lim dom ( 𝐹 ↾ suc 𝐵 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( Lim dom 𝑥 ↔ Lim dom ( 𝐹 ↾ suc 𝐵 ) ) ) |
| 15 | rneq | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ran 𝑥 = ran ( 𝐹 ↾ suc 𝐵 ) ) | |
| 16 | 15 | unieqd | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ∪ ran 𝑥 = ∪ ran ( 𝐹 ↾ suc 𝐵 ) ) |
| 17 | fveq1 | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom 𝑥 ) ) | |
| 18 | 12 | unieqd | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ∪ dom 𝑥 = ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) |
| 20 | 17 19 | eqtrd | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) |
| 21 | 20 | fveq2d | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) |
| 22 | 14 16 21 | ifbieq12d | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) = if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) |
| 23 | 11 22 | ifbieq2d | ⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) = if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) ) |
| 24 | 7 | eleq1d | ⊢ ( 𝑦 = suc 𝐵 → ( ( 𝐹 ↾ 𝑦 ) ∈ V ↔ ( 𝐹 ↾ suc 𝐵 ) ∈ V ) ) |
| 25 | 24 3 | vtoclga | ⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐹 ↾ suc 𝐵 ) ∈ V ) |
| 26 | noel | ⊢ ¬ 𝐵 ∈ ∅ | |
| 27 | dmeq | ⊢ ( ( 𝐹 ↾ suc 𝐵 ) = ∅ → dom ( 𝐹 ↾ suc 𝐵 ) = dom ∅ ) | |
| 28 | dm0 | ⊢ dom ∅ = ∅ | |
| 29 | 27 28 | eqtrdi | ⊢ ( ( 𝐹 ↾ suc 𝐵 ) = ∅ → dom ( 𝐹 ↾ suc 𝐵 ) = ∅ ) |
| 30 | ordsson | ⊢ ( Ord 𝑋 → 𝑋 ⊆ On ) | |
| 31 | 5 30 | ax-mp | ⊢ 𝑋 ⊆ On |
| 32 | ordtr | ⊢ ( Ord 𝑋 → Tr 𝑋 ) | |
| 33 | 5 32 | ax-mp | ⊢ Tr 𝑋 |
| 34 | trsuc | ⊢ ( ( Tr 𝑋 ∧ suc 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 35 | 33 34 | mpan | ⊢ ( suc 𝐵 ∈ 𝑋 → 𝐵 ∈ 𝑋 ) |
| 36 | 31 35 | sselid | ⊢ ( suc 𝐵 ∈ 𝑋 → 𝐵 ∈ On ) |
| 37 | sucidg | ⊢ ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵 ) | |
| 38 | 36 37 | syl | ⊢ ( suc 𝐵 ∈ 𝑋 → 𝐵 ∈ suc 𝐵 ) |
| 39 | dmres | ⊢ dom ( 𝐹 ↾ suc 𝐵 ) = ( suc 𝐵 ∩ dom 𝐹 ) | |
| 40 | ordelss | ⊢ ( ( Ord 𝑋 ∧ suc 𝐵 ∈ 𝑋 ) → suc 𝐵 ⊆ 𝑋 ) | |
| 41 | 5 40 | mpan | ⊢ ( suc 𝐵 ∈ 𝑋 → suc 𝐵 ⊆ 𝑋 ) |
| 42 | 4 | fndmi | ⊢ dom 𝐹 = 𝑋 |
| 43 | 41 42 | sseqtrrdi | ⊢ ( suc 𝐵 ∈ 𝑋 → suc 𝐵 ⊆ dom 𝐹 ) |
| 44 | dfss2 | ⊢ ( suc 𝐵 ⊆ dom 𝐹 ↔ ( suc 𝐵 ∩ dom 𝐹 ) = suc 𝐵 ) | |
| 45 | 43 44 | sylib | ⊢ ( suc 𝐵 ∈ 𝑋 → ( suc 𝐵 ∩ dom 𝐹 ) = suc 𝐵 ) |
| 46 | 39 45 | eqtrid | ⊢ ( suc 𝐵 ∈ 𝑋 → dom ( 𝐹 ↾ suc 𝐵 ) = suc 𝐵 ) |
| 47 | 38 46 | eleqtrrd | ⊢ ( suc 𝐵 ∈ 𝑋 → 𝐵 ∈ dom ( 𝐹 ↾ suc 𝐵 ) ) |
| 48 | eleq2 | ⊢ ( dom ( 𝐹 ↾ suc 𝐵 ) = ∅ → ( 𝐵 ∈ dom ( 𝐹 ↾ suc 𝐵 ) ↔ 𝐵 ∈ ∅ ) ) | |
| 49 | 47 48 | syl5ibcom | ⊢ ( suc 𝐵 ∈ 𝑋 → ( dom ( 𝐹 ↾ suc 𝐵 ) = ∅ → 𝐵 ∈ ∅ ) ) |
| 50 | 29 49 | syl5 | ⊢ ( suc 𝐵 ∈ 𝑋 → ( ( 𝐹 ↾ suc 𝐵 ) = ∅ → 𝐵 ∈ ∅ ) ) |
| 51 | 26 50 | mtoi | ⊢ ( suc 𝐵 ∈ 𝑋 → ¬ ( 𝐹 ↾ suc 𝐵 ) = ∅ ) |
| 52 | 51 | iffalsed | ⊢ ( suc 𝐵 ∈ 𝑋 → if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) = if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) |
| 53 | nlimsucg | ⊢ ( 𝐵 ∈ On → ¬ Lim suc 𝐵 ) | |
| 54 | 36 53 | syl | ⊢ ( suc 𝐵 ∈ 𝑋 → ¬ Lim suc 𝐵 ) |
| 55 | limeq | ⊢ ( dom ( 𝐹 ↾ suc 𝐵 ) = suc 𝐵 → ( Lim dom ( 𝐹 ↾ suc 𝐵 ) ↔ Lim suc 𝐵 ) ) | |
| 56 | 46 55 | syl | ⊢ ( suc 𝐵 ∈ 𝑋 → ( Lim dom ( 𝐹 ↾ suc 𝐵 ) ↔ Lim suc 𝐵 ) ) |
| 57 | 54 56 | mtbird | ⊢ ( suc 𝐵 ∈ 𝑋 → ¬ Lim dom ( 𝐹 ↾ suc 𝐵 ) ) |
| 58 | 57 | iffalsed | ⊢ ( suc 𝐵 ∈ 𝑋 → if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) = ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) |
| 59 | 46 | unieqd | ⊢ ( suc 𝐵 ∈ 𝑋 → ∪ dom ( 𝐹 ↾ suc 𝐵 ) = ∪ suc 𝐵 ) |
| 60 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 61 | ordunisuc | ⊢ ( Ord 𝐵 → ∪ suc 𝐵 = 𝐵 ) | |
| 62 | 36 60 61 | 3syl | ⊢ ( suc 𝐵 ∈ 𝑋 → ∪ suc 𝐵 = 𝐵 ) |
| 63 | 59 62 | eqtrd | ⊢ ( suc 𝐵 ∈ 𝑋 → ∪ dom ( 𝐹 ↾ suc 𝐵 ) = 𝐵 ) |
| 64 | 63 | fveq2d | ⊢ ( suc 𝐵 ∈ 𝑋 → ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) = ( ( 𝐹 ↾ suc 𝐵 ) ‘ 𝐵 ) ) |
| 65 | 38 | fvresd | ⊢ ( suc 𝐵 ∈ 𝑋 → ( ( 𝐹 ↾ suc 𝐵 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 66 | 64 65 | eqtrd | ⊢ ( suc 𝐵 ∈ 𝑋 → ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 67 | 66 | fveq2d | ⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 68 | 52 58 67 | 3eqtrd | ⊢ ( suc 𝐵 ∈ 𝑋 → if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 69 | fvex | ⊢ ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ V | |
| 70 | 68 69 | eqeltrdi | ⊢ ( suc 𝐵 ∈ 𝑋 → if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) ∈ V ) |
| 71 | 1 23 25 70 | fvmptd3 | ⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐺 ‘ ( 𝐹 ↾ suc 𝐵 ) ) = if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) ) |
| 72 | 10 71 68 | 3eqtrd | ⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐹 ‘ suc 𝐵 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |