This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of F at a limit ordinal. Part 3 of Theorem 7.44 of TakeutiZaring p. 49. (Contributed by NM, 23-Apr-1995) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz7.44.1 | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) | |
| tz7.44.2 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) | ||
| tz7.44.3 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ↾ 𝑦 ) ∈ V ) | ||
| tz7.44.4 | ⊢ 𝐹 Fn 𝑋 | ||
| tz7.44.5 | ⊢ Ord 𝑋 | ||
| Assertion | tz7.44-3 | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ‘ 𝐵 ) = ∪ ( 𝐹 “ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.44.1 | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) | |
| 2 | tz7.44.2 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) | |
| 3 | tz7.44.3 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ↾ 𝑦 ) ∈ V ) | |
| 4 | tz7.44.4 | ⊢ 𝐹 Fn 𝑋 | |
| 5 | tz7.44.5 | ⊢ Ord 𝑋 | |
| 6 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 7 | reseq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ 𝐵 ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
| 10 | 9 2 | vtoclga | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) ) |
| 12 | 7 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ↾ 𝑦 ) ∈ V ↔ ( 𝐹 ↾ 𝐵 ) ∈ V ) ) |
| 13 | 12 3 | vtoclga | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
| 15 | simpr | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → Lim 𝐵 ) | |
| 16 | nlim0 | ⊢ ¬ Lim ∅ | |
| 17 | dmres | ⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) | |
| 18 | ordelss | ⊢ ( ( Ord 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ⊆ 𝑋 ) | |
| 19 | 5 18 | mpan | ⊢ ( 𝐵 ∈ 𝑋 → 𝐵 ⊆ 𝑋 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → 𝐵 ⊆ 𝑋 ) |
| 21 | fndm | ⊢ ( 𝐹 Fn 𝑋 → dom 𝐹 = 𝑋 ) | |
| 22 | 4 21 | ax-mp | ⊢ dom 𝐹 = 𝑋 |
| 23 | 20 22 | sseqtrrdi | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → 𝐵 ⊆ dom 𝐹 ) |
| 24 | dfss2 | ⊢ ( 𝐵 ⊆ dom 𝐹 ↔ ( 𝐵 ∩ dom 𝐹 ) = 𝐵 ) | |
| 25 | 23 24 | sylib | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐵 ∩ dom 𝐹 ) = 𝐵 ) |
| 26 | 17 25 | eqtrid | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → dom ( 𝐹 ↾ 𝐵 ) = 𝐵 ) |
| 27 | dmeq | ⊢ ( ( 𝐹 ↾ 𝐵 ) = ∅ → dom ( 𝐹 ↾ 𝐵 ) = dom ∅ ) | |
| 28 | dm0 | ⊢ dom ∅ = ∅ | |
| 29 | 27 28 | eqtrdi | ⊢ ( ( 𝐹 ↾ 𝐵 ) = ∅ → dom ( 𝐹 ↾ 𝐵 ) = ∅ ) |
| 30 | 26 29 | sylan9req | ⊢ ( ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) ∧ ( 𝐹 ↾ 𝐵 ) = ∅ ) → 𝐵 = ∅ ) |
| 31 | limeq | ⊢ ( 𝐵 = ∅ → ( Lim 𝐵 ↔ Lim ∅ ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) ∧ ( 𝐹 ↾ 𝐵 ) = ∅ ) → ( Lim 𝐵 ↔ Lim ∅ ) ) |
| 33 | 16 32 | mtbiri | ⊢ ( ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) ∧ ( 𝐹 ↾ 𝐵 ) = ∅ ) → ¬ Lim 𝐵 ) |
| 34 | 33 | ex | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) = ∅ → ¬ Lim 𝐵 ) ) |
| 35 | 15 34 | mt2d | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ¬ ( 𝐹 ↾ 𝐵 ) = ∅ ) |
| 36 | 35 | iffalsed | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) = if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) |
| 37 | limeq | ⊢ ( dom ( 𝐹 ↾ 𝐵 ) = 𝐵 → ( Lim dom ( 𝐹 ↾ 𝐵 ) ↔ Lim 𝐵 ) ) | |
| 38 | 26 37 | syl | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( Lim dom ( 𝐹 ↾ 𝐵 ) ↔ Lim 𝐵 ) ) |
| 39 | 15 38 | mpbird | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → Lim dom ( 𝐹 ↾ 𝐵 ) ) |
| 40 | 39 | iftrued | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
| 41 | 36 40 | eqtrd | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
| 42 | rnexg | ⊢ ( ( 𝐹 ↾ 𝐵 ) ∈ V → ran ( 𝐹 ↾ 𝐵 ) ∈ V ) | |
| 43 | uniexg | ⊢ ( ran ( 𝐹 ↾ 𝐵 ) ∈ V → ∪ ran ( 𝐹 ↾ 𝐵 ) ∈ V ) | |
| 44 | 14 42 43 | 3syl | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ∪ ran ( 𝐹 ↾ 𝐵 ) ∈ V ) |
| 45 | 41 44 | eqeltrd | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ∈ V ) |
| 46 | eqeq1 | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( 𝑥 = ∅ ↔ ( 𝐹 ↾ 𝐵 ) = ∅ ) ) | |
| 47 | dmeq | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → dom 𝑥 = dom ( 𝐹 ↾ 𝐵 ) ) | |
| 48 | limeq | ⊢ ( dom 𝑥 = dom ( 𝐹 ↾ 𝐵 ) → ( Lim dom 𝑥 ↔ Lim dom ( 𝐹 ↾ 𝐵 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( Lim dom 𝑥 ↔ Lim dom ( 𝐹 ↾ 𝐵 ) ) ) |
| 50 | rneq | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ran 𝑥 = ran ( 𝐹 ↾ 𝐵 ) ) | |
| 51 | 50 | unieqd | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ∪ ran 𝑥 = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
| 52 | fveq1 | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom 𝑥 ) ) | |
| 53 | 47 | unieqd | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ∪ dom 𝑥 = ∪ dom ( 𝐹 ↾ 𝐵 ) ) |
| 54 | 53 | fveq2d | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) |
| 55 | 52 54 | eqtrd | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) |
| 56 | 55 | fveq2d | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) |
| 57 | 49 51 56 | ifbieq12d | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) = if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) |
| 58 | 46 57 | ifbieq2d | ⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) = if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ) |
| 59 | 58 1 | fvmptg | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) ∈ V ∧ if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ∈ V ) → ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) = if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ) |
| 60 | 14 45 59 | syl2anc | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) = if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ) |
| 61 | 60 41 | eqtrd | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
| 62 | 11 61 | eqtrd | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ‘ 𝐵 ) = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
| 63 | df-ima | ⊢ ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) | |
| 64 | 63 | unieqi | ⊢ ∪ ( 𝐹 “ 𝐵 ) = ∪ ran ( 𝐹 ↾ 𝐵 ) |
| 65 | 62 64 | eqtr4di | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ‘ 𝐵 ) = ∪ ( 𝐹 “ 𝐵 ) ) |