This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of F at a successor ordinal. Part 2 of Theorem 7.44 of TakeutiZaring p. 49. (Contributed by NM, 23-Apr-1995) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz7.44.1 | |- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
|
| tz7.44.2 | |- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
||
| tz7.44.3 | |- ( y e. X -> ( F |` y ) e. _V ) |
||
| tz7.44.4 | |- F Fn X |
||
| tz7.44.5 | |- Ord X |
||
| Assertion | tz7.44-2 | |- ( suc B e. X -> ( F ` suc B ) = ( H ` ( F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.44.1 | |- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
|
| 2 | tz7.44.2 | |- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
|
| 3 | tz7.44.3 | |- ( y e. X -> ( F |` y ) e. _V ) |
|
| 4 | tz7.44.4 | |- F Fn X |
|
| 5 | tz7.44.5 | |- Ord X |
|
| 6 | fveq2 | |- ( y = suc B -> ( F ` y ) = ( F ` suc B ) ) |
|
| 7 | reseq2 | |- ( y = suc B -> ( F |` y ) = ( F |` suc B ) ) |
|
| 8 | 7 | fveq2d | |- ( y = suc B -> ( G ` ( F |` y ) ) = ( G ` ( F |` suc B ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( y = suc B -> ( ( F ` y ) = ( G ` ( F |` y ) ) <-> ( F ` suc B ) = ( G ` ( F |` suc B ) ) ) ) |
| 10 | 9 2 | vtoclga | |- ( suc B e. X -> ( F ` suc B ) = ( G ` ( F |` suc B ) ) ) |
| 11 | eqeq1 | |- ( x = ( F |` suc B ) -> ( x = (/) <-> ( F |` suc B ) = (/) ) ) |
|
| 12 | dmeq | |- ( x = ( F |` suc B ) -> dom x = dom ( F |` suc B ) ) |
|
| 13 | limeq | |- ( dom x = dom ( F |` suc B ) -> ( Lim dom x <-> Lim dom ( F |` suc B ) ) ) |
|
| 14 | 12 13 | syl | |- ( x = ( F |` suc B ) -> ( Lim dom x <-> Lim dom ( F |` suc B ) ) ) |
| 15 | rneq | |- ( x = ( F |` suc B ) -> ran x = ran ( F |` suc B ) ) |
|
| 16 | 15 | unieqd | |- ( x = ( F |` suc B ) -> U. ran x = U. ran ( F |` suc B ) ) |
| 17 | fveq1 | |- ( x = ( F |` suc B ) -> ( x ` U. dom x ) = ( ( F |` suc B ) ` U. dom x ) ) |
|
| 18 | 12 | unieqd | |- ( x = ( F |` suc B ) -> U. dom x = U. dom ( F |` suc B ) ) |
| 19 | 18 | fveq2d | |- ( x = ( F |` suc B ) -> ( ( F |` suc B ) ` U. dom x ) = ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) |
| 20 | 17 19 | eqtrd | |- ( x = ( F |` suc B ) -> ( x ` U. dom x ) = ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) |
| 21 | 20 | fveq2d | |- ( x = ( F |` suc B ) -> ( H ` ( x ` U. dom x ) ) = ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) |
| 22 | 14 16 21 | ifbieq12d | |- ( x = ( F |` suc B ) -> if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) = if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) |
| 23 | 11 22 | ifbieq2d | |- ( x = ( F |` suc B ) -> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) = if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) ) |
| 24 | 7 | eleq1d | |- ( y = suc B -> ( ( F |` y ) e. _V <-> ( F |` suc B ) e. _V ) ) |
| 25 | 24 3 | vtoclga | |- ( suc B e. X -> ( F |` suc B ) e. _V ) |
| 26 | noel | |- -. B e. (/) |
|
| 27 | dmeq | |- ( ( F |` suc B ) = (/) -> dom ( F |` suc B ) = dom (/) ) |
|
| 28 | dm0 | |- dom (/) = (/) |
|
| 29 | 27 28 | eqtrdi | |- ( ( F |` suc B ) = (/) -> dom ( F |` suc B ) = (/) ) |
| 30 | ordsson | |- ( Ord X -> X C_ On ) |
|
| 31 | 5 30 | ax-mp | |- X C_ On |
| 32 | ordtr | |- ( Ord X -> Tr X ) |
|
| 33 | 5 32 | ax-mp | |- Tr X |
| 34 | trsuc | |- ( ( Tr X /\ suc B e. X ) -> B e. X ) |
|
| 35 | 33 34 | mpan | |- ( suc B e. X -> B e. X ) |
| 36 | 31 35 | sselid | |- ( suc B e. X -> B e. On ) |
| 37 | sucidg | |- ( B e. On -> B e. suc B ) |
|
| 38 | 36 37 | syl | |- ( suc B e. X -> B e. suc B ) |
| 39 | dmres | |- dom ( F |` suc B ) = ( suc B i^i dom F ) |
|
| 40 | ordelss | |- ( ( Ord X /\ suc B e. X ) -> suc B C_ X ) |
|
| 41 | 5 40 | mpan | |- ( suc B e. X -> suc B C_ X ) |
| 42 | 4 | fndmi | |- dom F = X |
| 43 | 41 42 | sseqtrrdi | |- ( suc B e. X -> suc B C_ dom F ) |
| 44 | dfss2 | |- ( suc B C_ dom F <-> ( suc B i^i dom F ) = suc B ) |
|
| 45 | 43 44 | sylib | |- ( suc B e. X -> ( suc B i^i dom F ) = suc B ) |
| 46 | 39 45 | eqtrid | |- ( suc B e. X -> dom ( F |` suc B ) = suc B ) |
| 47 | 38 46 | eleqtrrd | |- ( suc B e. X -> B e. dom ( F |` suc B ) ) |
| 48 | eleq2 | |- ( dom ( F |` suc B ) = (/) -> ( B e. dom ( F |` suc B ) <-> B e. (/) ) ) |
|
| 49 | 47 48 | syl5ibcom | |- ( suc B e. X -> ( dom ( F |` suc B ) = (/) -> B e. (/) ) ) |
| 50 | 29 49 | syl5 | |- ( suc B e. X -> ( ( F |` suc B ) = (/) -> B e. (/) ) ) |
| 51 | 26 50 | mtoi | |- ( suc B e. X -> -. ( F |` suc B ) = (/) ) |
| 52 | 51 | iffalsed | |- ( suc B e. X -> if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) = if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) |
| 53 | nlimsucg | |- ( B e. On -> -. Lim suc B ) |
|
| 54 | 36 53 | syl | |- ( suc B e. X -> -. Lim suc B ) |
| 55 | limeq | |- ( dom ( F |` suc B ) = suc B -> ( Lim dom ( F |` suc B ) <-> Lim suc B ) ) |
|
| 56 | 46 55 | syl | |- ( suc B e. X -> ( Lim dom ( F |` suc B ) <-> Lim suc B ) ) |
| 57 | 54 56 | mtbird | |- ( suc B e. X -> -. Lim dom ( F |` suc B ) ) |
| 58 | 57 | iffalsed | |- ( suc B e. X -> if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) = ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) |
| 59 | 46 | unieqd | |- ( suc B e. X -> U. dom ( F |` suc B ) = U. suc B ) |
| 60 | eloni | |- ( B e. On -> Ord B ) |
|
| 61 | ordunisuc | |- ( Ord B -> U. suc B = B ) |
|
| 62 | 36 60 61 | 3syl | |- ( suc B e. X -> U. suc B = B ) |
| 63 | 59 62 | eqtrd | |- ( suc B e. X -> U. dom ( F |` suc B ) = B ) |
| 64 | 63 | fveq2d | |- ( suc B e. X -> ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) = ( ( F |` suc B ) ` B ) ) |
| 65 | 38 | fvresd | |- ( suc B e. X -> ( ( F |` suc B ) ` B ) = ( F ` B ) ) |
| 66 | 64 65 | eqtrd | |- ( suc B e. X -> ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) = ( F ` B ) ) |
| 67 | 66 | fveq2d | |- ( suc B e. X -> ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) = ( H ` ( F ` B ) ) ) |
| 68 | 52 58 67 | 3eqtrd | |- ( suc B e. X -> if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) = ( H ` ( F ` B ) ) ) |
| 69 | fvex | |- ( H ` ( F ` B ) ) e. _V |
|
| 70 | 68 69 | eqeltrdi | |- ( suc B e. X -> if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) e. _V ) |
| 71 | 1 23 25 70 | fvmptd3 | |- ( suc B e. X -> ( G ` ( F |` suc B ) ) = if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) ) |
| 72 | 10 71 68 | 3eqtrd | |- ( suc B e. X -> ( F ` suc B ) = ( H ` ( F ` B ) ) ) |