This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of two connected spaces is connected. (Contributed by Mario Carneiro, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txconn | ⊢ ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) → ( 𝑅 ×t 𝑆 ) ∈ Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conntop | ⊢ ( 𝑅 ∈ Conn → 𝑅 ∈ Top ) | |
| 2 | conntop | ⊢ ( 𝑆 ∈ Conn → 𝑆 ∈ Top ) | |
| 3 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 5 | neq0 | ⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝑥 ) | |
| 6 | simplr | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) | |
| 7 | 6 | elin1d | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) |
| 8 | elssuni | ⊢ ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) → 𝑥 ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 10 | simprr | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) | |
| 11 | simplll | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑅 ∈ Conn ) | |
| 12 | 11 1 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑅 ∈ Top ) |
| 13 | simpllr | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑆 ∈ Conn ) | |
| 14 | 13 2 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑆 ∈ Top ) |
| 15 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 16 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 17 | 15 16 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 18 | 12 14 17 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 19 | 10 18 | eleqtrrd | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑤 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 20 | 1st2nd2 | ⊢ ( 𝑤 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
| 22 | xp2nd | ⊢ ( 𝑤 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 2nd ‘ 𝑤 ) ∈ ∪ 𝑆 ) | |
| 23 | 19 22 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 2nd ‘ 𝑤 ) ∈ ∪ 𝑆 ) |
| 24 | eqid | ⊢ ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) = ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) | |
| 25 | 24 | mptpreima | ⊢ ( ◡ ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) “ 𝑥 ) = { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } |
| 26 | toptopon2 | ⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) | |
| 27 | 14 26 | sylib | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 28 | toptopon2 | ⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) | |
| 29 | 12 28 | sylib | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 30 | xp1st | ⊢ ( 𝑤 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 1st ‘ 𝑤 ) ∈ ∪ 𝑅 ) | |
| 31 | 19 30 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 1st ‘ 𝑤 ) ∈ ∪ 𝑅 ) |
| 32 | 27 29 31 | cnmptc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑎 ∈ ∪ 𝑆 ↦ ( 1st ‘ 𝑤 ) ) ∈ ( 𝑆 Cn 𝑅 ) ) |
| 33 | 27 | cnmptid | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑎 ∈ ∪ 𝑆 ↦ 𝑎 ) ∈ ( 𝑆 Cn 𝑆 ) ) |
| 34 | 27 32 33 | cnmpt1t | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) ∈ ( 𝑆 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 35 | simplr | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) | |
| 36 | 35 | elin1d | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) |
| 37 | cnima | ⊢ ( ( ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) ∈ ( 𝑆 Cn ( 𝑅 ×t 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) “ 𝑥 ) ∈ 𝑆 ) | |
| 38 | 34 36 37 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) “ 𝑥 ) ∈ 𝑆 ) |
| 39 | 25 38 | eqeltrrid | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } ∈ 𝑆 ) |
| 40 | simprl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑧 ∈ 𝑥 ) | |
| 41 | elunii | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) → 𝑧 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) | |
| 42 | 40 36 41 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑧 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 43 | 42 18 | eleqtrrd | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑧 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 44 | xp2nd | ⊢ ( 𝑧 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 2nd ‘ 𝑧 ) ∈ ∪ 𝑆 ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ∪ 𝑆 ) |
| 46 | eqid | ⊢ ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) = ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 47 | 46 | mptpreima | ⊢ ( ◡ ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) “ 𝑥 ) = { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } |
| 48 | 29 | cnmptid | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑎 ∈ ∪ 𝑅 ↦ 𝑎 ) ∈ ( 𝑅 Cn 𝑅 ) ) |
| 49 | 29 27 45 | cnmptc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑎 ∈ ∪ 𝑅 ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( 𝑅 Cn 𝑆 ) ) |
| 50 | 29 48 49 | cnmpt1t | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 51 | cnima | ⊢ ( ( ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) “ 𝑥 ) ∈ 𝑅 ) | |
| 52 | 50 36 51 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) “ 𝑥 ) ∈ 𝑅 ) |
| 53 | 47 52 | eqeltrrid | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } ∈ 𝑅 ) |
| 54 | xp1st | ⊢ ( 𝑧 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 1st ‘ 𝑧 ) ∈ ∪ 𝑅 ) | |
| 55 | 43 54 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ∪ 𝑅 ) |
| 56 | 1st2nd2 | ⊢ ( 𝑧 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 57 | 43 56 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 58 | 57 40 | eqeltrrd | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) |
| 59 | opeq1 | ⊢ ( 𝑎 = ( 1st ‘ 𝑧 ) → 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 60 | 59 | eleq1d | ⊢ ( 𝑎 = ( 1st ‘ 𝑧 ) → ( 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ↔ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) ) |
| 61 | 60 | rspcev | ⊢ ( ( ( 1st ‘ 𝑧 ) ∈ ∪ 𝑅 ∧ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) → ∃ 𝑎 ∈ ∪ 𝑅 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) |
| 62 | 55 58 61 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ∃ 𝑎 ∈ ∪ 𝑅 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) |
| 63 | rabn0 | ⊢ ( { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑎 ∈ ∪ 𝑅 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) | |
| 64 | 62 63 | sylibr | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } ≠ ∅ ) |
| 65 | 35 | elin2d | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑥 ∈ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 66 | cnclima | ⊢ ( ( ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) ∧ 𝑥 ∈ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) “ 𝑥 ) ∈ ( Clsd ‘ 𝑅 ) ) | |
| 67 | 50 65 66 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝑅 ↦ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ) “ 𝑥 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 68 | 47 67 | eqeltrrid | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } ∈ ( Clsd ‘ 𝑅 ) ) |
| 69 | 15 11 53 64 68 | connclo | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } = ∪ 𝑅 ) |
| 70 | 31 69 | eleqtrrd | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 1st ‘ 𝑤 ) ∈ { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } ) |
| 71 | opeq1 | ⊢ ( 𝑎 = ( 1st ‘ 𝑤 ) → 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 72 | 71 | eleq1d | ⊢ ( 𝑎 = ( 1st ‘ 𝑤 ) → ( 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) ) |
| 73 | 72 | elrab | ⊢ ( ( 1st ‘ 𝑤 ) ∈ { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } ↔ ( ( 1st ‘ 𝑤 ) ∈ ∪ 𝑅 ∧ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) ) |
| 74 | 73 | simprbi | ⊢ ( ( 1st ‘ 𝑤 ) ∈ { 𝑎 ∈ ∪ 𝑅 ∣ 〈 𝑎 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 } → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) |
| 75 | 70 74 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) |
| 76 | opeq2 | ⊢ ( 𝑎 = ( 2nd ‘ 𝑧 ) → 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 77 | 76 | eleq1d | ⊢ ( 𝑎 = ( 2nd ‘ 𝑧 ) → ( 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) ) |
| 78 | 77 | rspcev | ⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ ∪ 𝑆 ∧ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝑥 ) → ∃ 𝑎 ∈ ∪ 𝑆 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 ) |
| 79 | 45 75 78 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ∃ 𝑎 ∈ ∪ 𝑆 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 ) |
| 80 | rabn0 | ⊢ ( { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑎 ∈ ∪ 𝑆 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 ) | |
| 81 | 79 80 | sylibr | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } ≠ ∅ ) |
| 82 | cnclima | ⊢ ( ( ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) ∈ ( 𝑆 Cn ( 𝑅 ×t 𝑆 ) ) ∧ 𝑥 ∈ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) “ 𝑥 ) ∈ ( Clsd ‘ 𝑆 ) ) | |
| 83 | 34 65 82 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝑆 ↦ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ) “ 𝑥 ) ∈ ( Clsd ‘ 𝑆 ) ) |
| 84 | 25 83 | eqeltrrid | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } ∈ ( Clsd ‘ 𝑆 ) ) |
| 85 | 16 13 39 81 84 | connclo | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } = ∪ 𝑆 ) |
| 86 | 23 85 | eleqtrrd | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 2nd ‘ 𝑤 ) ∈ { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } ) |
| 87 | opeq2 | ⊢ ( 𝑎 = ( 2nd ‘ 𝑤 ) → 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) | |
| 88 | 87 | eleq1d | ⊢ ( 𝑎 = ( 2nd ‘ 𝑤 ) → ( 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑥 ) ) |
| 89 | 88 | elrab | ⊢ ( ( 2nd ‘ 𝑤 ) ∈ { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } ↔ ( ( 2nd ‘ 𝑤 ) ∈ ∪ 𝑆 ∧ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑥 ) ) |
| 90 | 89 | simprbi | ⊢ ( ( 2nd ‘ 𝑤 ) ∈ { 𝑎 ∈ ∪ 𝑆 ∣ 〈 ( 1st ‘ 𝑤 ) , 𝑎 〉 ∈ 𝑥 } → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑥 ) |
| 91 | 86 90 | syl | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑥 ) |
| 92 | 21 91 | eqeltrd | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) → 𝑤 ∈ 𝑥 ) |
| 93 | 92 | expr | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑤 ∈ ∪ ( 𝑅 ×t 𝑆 ) → 𝑤 ∈ 𝑥 ) ) |
| 94 | 93 | ssrdv | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ 𝑧 ∈ 𝑥 ) → ∪ ( 𝑅 ×t 𝑆 ) ⊆ 𝑥 ) |
| 95 | 9 94 | eqssd | ⊢ ( ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 96 | 95 | ex | ⊢ ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) → ( 𝑧 ∈ 𝑥 → 𝑥 = ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 97 | 96 | exlimdv | ⊢ ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) → ( ∃ 𝑧 𝑧 ∈ 𝑥 → 𝑥 = ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 98 | 5 97 | biimtrid | ⊢ ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) → ( ¬ 𝑥 = ∅ → 𝑥 = ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 99 | 98 | orrd | ⊢ ( ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) ∧ 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 100 | 99 | ex | ⊢ ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) → ( 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 101 | vex | ⊢ 𝑥 ∈ V | |
| 102 | 101 | elpr | ⊢ ( 𝑥 ∈ { ∅ , ∪ ( 𝑅 ×t 𝑆 ) } ↔ ( 𝑥 = ∅ ∨ 𝑥 = ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 103 | 100 102 | imbitrrdi | ⊢ ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) → ( 𝑥 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) → 𝑥 ∈ { ∅ , ∪ ( 𝑅 ×t 𝑆 ) } ) ) |
| 104 | 103 | ssrdv | ⊢ ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) → ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ⊆ { ∅ , ∪ ( 𝑅 ×t 𝑆 ) } ) |
| 105 | eqid | ⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) | |
| 106 | 105 | isconn2 | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Conn ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( ( 𝑅 ×t 𝑆 ) ∩ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) ⊆ { ∅ , ∪ ( 𝑅 ×t 𝑆 ) } ) ) |
| 107 | 4 104 106 | sylanbrc | ⊢ ( ( 𝑅 ∈ Conn ∧ 𝑆 ∈ Conn ) → ( 𝑅 ×t 𝑆 ) ∈ Conn ) |