This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isconn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| connclo.1 | ⊢ ( 𝜑 → 𝐽 ∈ Conn ) | ||
| connclo.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) | ||
| connclo.3 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| connclo.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| Assertion | connclo | ⊢ ( 𝜑 → 𝐴 = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | connclo.1 | ⊢ ( 𝜑 → 𝐽 ∈ Conn ) | |
| 3 | connclo.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) | |
| 4 | connclo.3 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 5 | connclo.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 6 | 4 | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = ∅ ) |
| 7 | 3 5 | elind | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
| 8 | 1 | isconn | ⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |
| 9 | 8 | simprbi | ⊢ ( 𝐽 ∈ Conn → ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) |
| 11 | 7 10 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ { ∅ , 𝑋 } ) |
| 12 | elpri | ⊢ ( 𝐴 ∈ { ∅ , 𝑋 } → ( 𝐴 = ∅ ∨ 𝐴 = 𝑋 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ 𝐴 = 𝑋 ) ) |
| 14 | 13 | ord | ⊢ ( 𝜑 → ( ¬ 𝐴 = ∅ → 𝐴 = 𝑋 ) ) |
| 15 | 6 14 | mpd | ⊢ ( 𝜑 → 𝐴 = 𝑋 ) |