This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate J is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isconn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isconn2 | ⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isconn | ⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |
| 3 | eqss | ⊢ ( ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ↔ ( ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , 𝑋 } ∧ { ∅ , 𝑋 } ⊆ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) ) | |
| 4 | 0opn | ⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) | |
| 5 | 0cld | ⊢ ( 𝐽 ∈ Top → ∅ ∈ ( Clsd ‘ 𝐽 ) ) | |
| 6 | 4 5 | elind | ⊢ ( 𝐽 ∈ Top → ∅ ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
| 7 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 8 | 1 | topcld | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 | 7 8 | elind | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
| 10 | 6 9 | prssd | ⊢ ( 𝐽 ∈ Top → { ∅ , 𝑋 } ⊆ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
| 11 | 10 | biantrud | ⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , 𝑋 } ↔ ( ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , 𝑋 } ∧ { ∅ , 𝑋 } ⊆ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) ) ) |
| 12 | 3 11 | bitr4id | ⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ↔ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , 𝑋 } ) ) |
| 13 | 12 | pm5.32i | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , 𝑋 } ) ) |
| 14 | 2 13 | bitri | ⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , 𝑋 } ) ) |