This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a limit point of the filter F , then all the points which specialize A (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimsncls | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝐽 fLim 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimtop | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | flimelbas | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 4 | 3 | snssd | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
| 5 | 2 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ∪ 𝐽 ) |
| 6 | 1 4 5 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ∪ 𝐽 ) |
| 7 | 6 | sselda | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑥 ∈ ∪ 𝐽 ) |
| 8 | simpll | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) | |
| 9 | 8 1 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝐽 ∈ Top ) |
| 10 | simprl | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) | |
| 11 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ Top ) |
| 12 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
| 13 | simpr | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 14 | 11 12 13 | 3jca | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 15 | 2 | clsndisj | ⊢ ( ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → ( 𝑦 ∩ { 𝐴 } ) ≠ ∅ ) |
| 16 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ 𝑦 ) | |
| 17 | 16 | necon2abii | ⊢ ( 𝐴 ∈ 𝑦 ↔ ( 𝑦 ∩ { 𝐴 } ) ≠ ∅ ) |
| 18 | 15 17 | sylibr | ⊢ ( ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝐴 ∈ 𝑦 ) |
| 19 | 14 18 | sylan | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝐴 ∈ 𝑦 ) |
| 20 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 21 | 9 10 19 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 22 | flimnei | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ∈ 𝐹 ) | |
| 23 | 8 21 22 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) |
| 24 | 23 | expr | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 25 | 24 | ralrimiva | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 26 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 27 | 11 26 | sylib | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 28 | 2 | flimfil | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 30 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 32 | 7 25 31 | mpbir2and | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 33 | 32 | ex | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 34 | 33 | ssrdv | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝐽 fLim 𝐹 ) ) |