This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a normed group (i.e., a group equipped with a norm) without using the properties of a metric space. This corresponds to the definition in N. H. Bingham, A. J. Ostaszewski: "Normed versus topological groups: dichotomy and duality", 2010, Dissertationes Mathematicae 472, pp. 1-138 and E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006. (Contributed by AV, 16-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngngp3.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngngp3.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| tngngp3.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tngngp3.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| tngngp3.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | tngngp3 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp3.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngngp3.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | tngngp3.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | tngngp3.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 5 | tngngp3.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 6 | 2 | fvexi | ⊢ 𝑋 ∈ V |
| 7 | fex | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ) → 𝑁 ∈ V ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → 𝑁 ∈ V ) |
| 9 | 1 | tnggrpr | ⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |
| 10 | simp2 | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝐺 ∈ Grp ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 12 | eqid | ⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 14 | 11 12 13 | nmeq0 | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) |
| 15 | eqid | ⊢ ( invg ‘ 𝑇 ) = ( invg ‘ 𝑇 ) | |
| 16 | 11 12 15 | nminv | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 18 | 11 12 17 | nmtri | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ∧ 𝑦 ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 19 | 18 | 3expa | ⊢ ( ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 20 | 19 | ralrimiva | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 21 | 14 16 20 | 3jca | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 22 | 21 | ralrimiva | ⊢ ( 𝑇 ∈ NrmGrp → ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 25 | 1 2 | tngbas | ⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 26 | 1 4 | tngplusg | ⊢ ( 𝑁 ∈ V → + = ( +g ‘ 𝑇 ) ) |
| 27 | eqidd | ⊢ ( 𝑁 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 28 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 29 | 1 28 | tngbas | ⊢ ( 𝑁 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 30 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 31 | 1 30 | tngplusg | ⊢ ( 𝑁 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 32 | 31 | oveqd | ⊢ ( 𝑁 ∈ V → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝑁 ∈ V ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 34 | 27 29 33 | grpinvpropd | ⊢ ( 𝑁 ∈ V → ( invg ‘ 𝐺 ) = ( invg ‘ 𝑇 ) ) |
| 35 | 5 34 | eqtrid | ⊢ ( 𝑁 ∈ V → 𝐼 = ( invg ‘ 𝑇 ) ) |
| 36 | 25 26 35 | 3jca | ⊢ ( 𝑁 ∈ V → ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ) |
| 38 | 37 | 3ad2ant1 | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ) |
| 39 | reex | ⊢ ℝ ∈ V | |
| 40 | 1 2 39 | tngnm | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 41 | 40 | 3adant1 | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 42 | 1 3 | tng0 | ⊢ ( 𝑁 ∈ V → 0 = ( 0g ‘ 𝑇 ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → 0 = ( 0g ‘ 𝑇 ) ) |
| 44 | 43 | 3ad2ant1 | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 0 = ( 0g ‘ 𝑇 ) ) |
| 45 | 38 41 44 | 3jca | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) ) |
| 46 | simp1 | ⊢ ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) → 𝑋 = ( Base ‘ 𝑇 ) ) | |
| 47 | 46 | 3ad2ant1 | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 48 | simp2 | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → 𝑁 = ( norm ‘ 𝑇 ) ) | |
| 49 | 48 | fveq1d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑁 ‘ 𝑥 ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 50 | 49 | eqeq1d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ) ) |
| 51 | simp3 | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → 0 = ( 0g ‘ 𝑇 ) ) | |
| 52 | 51 | eqeq2d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑥 = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) |
| 53 | 50 52 | bibi12d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) ) |
| 54 | simp3 | ⊢ ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) → 𝐼 = ( invg ‘ 𝑇 ) ) | |
| 55 | 54 | 3ad2ant1 | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → 𝐼 = ( invg ‘ 𝑇 ) ) |
| 56 | 55 | fveq1d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 57 | 48 56 | fveq12d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 58 | 57 49 | eqeq12d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ↔ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 59 | simp2 | ⊢ ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) → + = ( +g ‘ 𝑇 ) ) | |
| 60 | 59 | 3ad2ant1 | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → + = ( +g ‘ 𝑇 ) ) |
| 61 | 60 | oveqd | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 62 | 48 61 | fveq12d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ) |
| 63 | fveq1 | ⊢ ( 𝑁 = ( norm ‘ 𝑇 ) → ( 𝑁 ‘ 𝑥 ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) | |
| 64 | fveq1 | ⊢ ( 𝑁 = ( norm ‘ 𝑇 ) → ( 𝑁 ‘ 𝑦 ) = ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) | |
| 65 | 63 64 | oveq12d | ⊢ ( 𝑁 = ( norm ‘ 𝑇 ) → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 66 | 65 | 3ad2ant2 | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 67 | 62 66 | breq12d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 68 | 47 67 | raleqbidv | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 69 | 53 58 68 | 3anbi123d | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 70 | 47 69 | raleqbidv | ⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 71 | 45 70 | syl | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 72 | 24 71 | mpbird | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 73 | 10 72 | jca | ⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 74 | 73 | 3exp | ⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → ( 𝐺 ∈ Grp → ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) ) |
| 75 | 9 74 | mpd | ⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| 76 | 75 | expcom | ⊢ ( 𝑇 ∈ NrmGrp → ( 𝑁 ∈ V → ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) ) |
| 77 | 76 | com13 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑁 ∈ V → ( 𝑇 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) ) |
| 78 | 8 77 | mpd | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| 79 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 80 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → 𝐺 ∈ Grp ) | |
| 81 | 80 | adantl | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝐺 ∈ Grp ) |
| 82 | simpl | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝑁 : 𝑋 ⟶ ℝ ) | |
| 83 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑎 ) ) | |
| 84 | 83 | eqeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ ( 𝑁 ‘ 𝑎 ) = 0 ) ) |
| 85 | eqeq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 0 ↔ 𝑎 = 0 ) ) | |
| 86 | 84 85 | bibi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 87 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑎 ) ) | |
| 88 | 87 | fveq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) ) |
| 89 | 88 83 | eqeq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ↔ ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) = ( 𝑁 ‘ 𝑎 ) ) ) |
| 90 | fvoveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ) | |
| 91 | 83 | oveq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 92 | 90 91 | breq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 93 | 92 | ralbidv | ⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 94 | 86 89 93 | 3anbi123d | ⊢ ( 𝑥 = 𝑎 → ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) = ( 𝑁 ‘ 𝑎 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 95 | 94 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) = ( 𝑁 ‘ 𝑎 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 96 | simp1 | ⊢ ( ( ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) = ( 𝑁 ‘ 𝑎 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) | |
| 97 | 95 96 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) |
| 98 | 97 | ex | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝑎 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 99 | 98 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → ( 𝑎 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 100 | 99 | adantl | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → ( 𝑎 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 101 | 100 | imp | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) |
| 102 | 2 4 5 79 | grpsubval | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) |
| 103 | 102 | adantl | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) |
| 104 | 103 | fveq2d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 105 | 3simpc | ⊢ ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) | |
| 106 | 105 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 107 | simpr | ⊢ ( ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) | |
| 108 | 107 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 109 | oveq2 | ⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( 𝑎 + 𝑦 ) = ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) | |
| 110 | 109 | fveq2d | ⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) = ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 111 | fveq2 | ⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) | |
| 112 | 111 | oveq2d | ⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 113 | 110 112 | breq12d | ⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) |
| 114 | 92 113 | rspc2v | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) |
| 115 | 2 5 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ) → ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) |
| 116 | 115 | ex | ⊢ ( 𝐺 ∈ Grp → ( 𝑏 ∈ 𝑋 → ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) ) |
| 117 | 116 | anim2d | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 ∈ 𝑋 ∧ ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) ) ) |
| 118 | 117 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ∈ 𝑋 ∧ ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) ) |
| 119 | 114 118 | syl11 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) → ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) |
| 120 | 119 | expd | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) → ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) ) |
| 121 | 108 120 | syl | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) ) |
| 122 | 121 | imp | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) |
| 123 | 122 | imp | ⊢ ( ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 124 | simpl | ⊢ ( ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ) | |
| 125 | 124 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ) |
| 126 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑏 ) ) | |
| 127 | 126 | fveq2d | ⊢ ( 𝑥 = 𝑏 → ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) |
| 128 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑏 ) ) | |
| 129 | 127 128 | eqeq12d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ↔ ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) = ( 𝑁 ‘ 𝑏 ) ) ) |
| 130 | 129 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) = ( 𝑁 ‘ 𝑏 ) ) |
| 131 | 130 | eqcomd | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) |
| 132 | 131 | ex | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) → ( 𝑏 ∈ 𝑋 → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 133 | 125 132 | syl | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝑏 ∈ 𝑋 → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 134 | 133 | adantr | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) → ( 𝑏 ∈ 𝑋 → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 135 | 134 | adantld | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 136 | 135 | imp | ⊢ ( ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) |
| 137 | 136 | oveq2d | ⊢ ( ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) = ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 138 | 123 137 | breqtrrd | ⊢ ( ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 139 | 138 | ex | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) |
| 140 | 139 | ex | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) ) |
| 141 | 106 140 | syl | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) ) |
| 142 | 141 | impcom | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) |
| 143 | 142 | adantl | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) |
| 144 | 143 | imp | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 145 | 104 144 | eqbrtrd | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 146 | 1 2 79 3 81 82 101 145 | tngngpd | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝑇 ∈ NrmGrp ) |
| 147 | 146 | ex | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → 𝑇 ∈ NrmGrp ) ) |
| 148 | 78 147 | impbid | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |