This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| grpinvpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| grpinvpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | grpinvpropd | ⊢ ( 𝜑 → ( invg ‘ 𝐾 ) = ( invg ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | grpinvpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | grpinvpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | 1 2 3 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 6 | 3 5 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 7 | 6 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 8 | 7 | riotabidva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) = ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 9 | 8 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) ) |
| 10 | 1 | riotaeqdv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) = ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 11 | 1 10 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) ) |
| 12 | 2 | riotaeqdv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) = ( ℩ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 13 | 2 12 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) ) |
| 14 | 9 11 13 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 16 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 17 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 18 | eqid | ⊢ ( invg ‘ 𝐾 ) = ( invg ‘ 𝐾 ) | |
| 19 | 15 16 17 18 | grpinvfval | ⊢ ( invg ‘ 𝐾 ) = ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 20 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 21 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 22 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 23 | eqid | ⊢ ( invg ‘ 𝐿 ) = ( invg ‘ 𝐿 ) | |
| 24 | 20 21 22 23 | grpinvfval | ⊢ ( invg ‘ 𝐿 ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 25 | 14 19 24 | 3eqtr4g | ⊢ ( 𝜑 → ( invg ‘ 𝐾 ) = ( invg ‘ 𝐿 ) ) |