This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tngngp3.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| Assertion | tnggrpr | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp3.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | tngbas | ⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 4 | eqidd | ⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 1 5 | tngplusg | ⊢ ( 𝑁 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 7 | 6 | eqcomd | ⊢ ( 𝑁 ∈ 𝑉 → ( +g ‘ 𝑇 ) = ( +g ‘ 𝐺 ) ) |
| 8 | 7 | oveqdr | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 9 | 3 4 8 | grppropd | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑇 ∈ Grp ↔ 𝐺 ∈ Grp ) ) |
| 10 | 9 | biimpd | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑇 ∈ Grp → 𝐺 ∈ Grp ) ) |
| 11 | ngpgrp | ⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp ) | |
| 12 | 10 11 | impel | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |