This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nminv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | nminv | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | nminv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | 1 6 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 8 | 5 7 | syl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 9 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) | |
| 11 | 2 1 9 10 | ngpdsr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) |
| 12 | 8 11 | mpd3an3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) |
| 13 | 2 1 6 10 | nmval | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 15 | 1 9 3 6 | grpinvval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
| 16 | 4 15 | sylan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) |
| 18 | 12 14 17 | 3eqtr4rd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |