This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nmtri.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | nmtri | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | nmtri.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 6 | simp3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 7 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 8 | 1 7 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 9 | 5 6 8 | syl2anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 10 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 11 | 1 2 10 | nmmtri | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
| 12 | 9 11 | syld3an3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
| 13 | simp2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 14 | 1 3 10 7 5 13 6 | grpsubinv | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( -g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( 𝐴 + 𝐵 ) ) |
| 15 | 14 | fveq2d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 16 | 1 2 7 | nminv | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |
| 19 | 12 15 18 | 3brtr3d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |