This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngngp.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngngp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| tngngp.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| tngngp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | tngngp | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngngp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | tngngp.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | tngngp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) | |
| 6 | 1 2 5 | tngngp2 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ 𝑋 ) ) ) ) |
| 7 | 6 | simprbda | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |
| 8 | simplr | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑇 ∈ NrmGrp ) | |
| 9 | simpr | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 10 | 2 | fvexi | ⊢ 𝑋 ∈ V |
| 11 | reex | ⊢ ℝ ∈ V | |
| 12 | fex2 | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V ) → 𝑁 ∈ V ) | |
| 13 | 10 11 12 | mp3an23 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → 𝑁 ∈ V ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑁 ∈ V ) |
| 15 | 1 2 | tngbas | ⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 17 | 9 16 | eleqtrd | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ( Base ‘ 𝑇 ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 19 | eqid | ⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) | |
| 20 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 21 | 18 19 20 | nmeq0 | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) |
| 22 | 8 17 21 | syl2anc | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) |
| 23 | 7 | adantr | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 24 | simpll | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑁 : 𝑋 ⟶ ℝ ) | |
| 25 | 1 2 11 | tngnm | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 27 | 26 | fveq1d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑥 ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 28 | 27 | eqeq1d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ) ) |
| 29 | 1 4 | tng0 | ⊢ ( 𝑁 ∈ V → 0 = ( 0g ‘ 𝑇 ) ) |
| 30 | 14 29 | syl | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → 0 = ( 0g ‘ 𝑇 ) ) |
| 31 | 30 | eqeq2d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) |
| 32 | 22 28 31 | 3bitr4d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 33 | simpllr | ⊢ ( ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑇 ∈ NrmGrp ) | |
| 34 | 17 | adantr | ⊢ ( ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ ( Base ‘ 𝑇 ) ) |
| 35 | 16 | eleq2d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ( Base ‘ 𝑇 ) ) ) |
| 36 | 35 | biimpa | ⊢ ( ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ( Base ‘ 𝑇 ) ) |
| 37 | eqid | ⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) | |
| 38 | 18 19 37 | nmmtri | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ∧ 𝑦 ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( -g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 39 | 33 34 36 38 | syl3anc | ⊢ ( ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( -g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 40 | 2 16 | eqtr3id | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 41 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 42 | 1 41 | tngplusg | ⊢ ( 𝑁 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 43 | 14 42 | syl | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 44 | 40 43 | grpsubpropd | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( -g ‘ 𝐺 ) = ( -g ‘ 𝑇 ) ) |
| 45 | 3 44 | eqtrid | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → − = ( -g ‘ 𝑇 ) ) |
| 46 | 45 | oveqd | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 − 𝑦 ) = ( 𝑥 ( -g ‘ 𝑇 ) 𝑦 ) ) |
| 47 | 26 46 | fveq12d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( -g ‘ 𝑇 ) 𝑦 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( -g ‘ 𝑇 ) 𝑦 ) ) ) |
| 49 | 26 | fveq1d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑦 ) = ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) |
| 50 | 27 49 | oveq12d | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 52 | 39 48 51 | 3brtr4d | ⊢ ( ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 53 | 52 | ralrimiva | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 54 | 32 53 | jca | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 55 | 54 | ralrimiva | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 56 | 7 55 | jca | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 57 | simprl | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝐺 ∈ Grp ) | |
| 58 | simpl | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝑁 : 𝑋 ⟶ ℝ ) | |
| 59 | simpl | ⊢ ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | |
| 60 | 59 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 61 | 60 | ad2antll | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 62 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑎 ) ) | |
| 63 | 62 | eqeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ ( 𝑁 ‘ 𝑎 ) = 0 ) ) |
| 64 | eqeq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 0 ↔ 𝑎 = 0 ) ) | |
| 65 | 63 64 | bibi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 66 | 65 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) |
| 67 | 61 66 | sylan | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) |
| 68 | simpr | ⊢ ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) | |
| 69 | 68 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 70 | 69 | ad2antll | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 71 | fvoveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) = ( 𝑁 ‘ ( 𝑎 − 𝑦 ) ) ) | |
| 72 | 62 | oveq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 73 | 71 72 | breq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑎 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 74 | oveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝑎 − 𝑦 ) = ( 𝑎 − 𝑏 ) ) | |
| 75 | 74 | fveq2d | ⊢ ( 𝑦 = 𝑏 → ( 𝑁 ‘ ( 𝑎 − 𝑦 ) ) = ( 𝑁 ‘ ( 𝑎 − 𝑏 ) ) ) |
| 76 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑏 ) ) | |
| 77 | 76 | oveq2d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 78 | 75 77 | breq12d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝑁 ‘ ( 𝑎 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) |
| 79 | 73 78 | rspc2va | ⊢ ( ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 80 | 79 | ancoms | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 81 | 70 80 | sylan | ⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 82 | 1 2 3 4 57 58 67 81 | tngngpd | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝑇 ∈ NrmGrp ) |
| 83 | 56 82 | impbida | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |