This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubpropd.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | |
| grpsubpropd.p | ⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) | ||
| Assertion | grpsubpropd | ⊢ ( 𝜑 → ( -g ‘ 𝐺 ) = ( -g ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubpropd.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | |
| 2 | grpsubpropd.p | ⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) | |
| 3 | eqidd | ⊢ ( 𝜑 → 𝑎 = 𝑎 ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 5 | 2 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 6 | 4 1 5 | grpinvpropd | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐻 ) ) |
| 7 | 6 | fveq1d | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) |
| 8 | 2 3 7 | oveq123d | ⊢ ( 𝜑 → ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
| 9 | 1 1 8 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 12 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 14 | 10 11 12 13 | grpsubfval | ⊢ ( -g ‘ 𝐺 ) = ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 16 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 17 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 18 | eqid | ⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) | |
| 19 | 15 16 17 18 | grpsubfval | ⊢ ( -g ‘ 𝐻 ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
| 20 | 9 14 19 | 3eqtr4g | ⊢ ( 𝜑 → ( -g ‘ 𝐺 ) = ( -g ‘ 𝐻 ) ) |