This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A terminal category is a terminal object of the category of small categories. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcterm.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | |
| termcterm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| termcterm.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
| termcterm.t | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | ||
| Assertion | termcterm | ⊢ ( 𝜑 → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | |
| 2 | termcterm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | termcterm.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
| 4 | termcterm.t | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → 𝑑 ∈ ( Base ‘ 𝐸 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 7 | 1 6 2 | catcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 9 | 5 8 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → 𝑑 ∈ ( 𝑈 ∩ Cat ) ) |
| 10 | 9 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → 𝑑 ∈ Cat ) |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → 𝐶 ∈ TermCat ) |
| 12 | 10 11 | functermceu | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → 𝑈 ∈ 𝑉 ) |
| 14 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 15 | 4 | termccd | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 16 | 3 15 | elind | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑈 ∩ Cat ) ) |
| 17 | 16 7 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐸 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → 𝐶 ∈ ( Base ‘ 𝐸 ) ) |
| 19 | 1 6 13 14 5 18 | catchom | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑑 ( Hom ‘ 𝐸 ) 𝐶 ) = ( 𝑑 Func 𝐶 ) ) |
| 20 | 19 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑓 ∈ ( 𝑑 ( Hom ‘ 𝐸 ) 𝐶 ) ↔ 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) |
| 21 | 20 | eubidv | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ 𝐸 ) 𝐶 ) ↔ ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) |
| 22 | 12 21 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( Base ‘ 𝐸 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ 𝐸 ) 𝐶 ) ) |
| 23 | 22 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑑 ∈ ( Base ‘ 𝐸 ) ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ 𝐸 ) 𝐶 ) ) |
| 24 | 1 | catccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐸 ∈ Cat ) |
| 25 | 2 24 | syl | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 26 | 6 14 25 17 | istermo | ⊢ ( 𝜑 → ( 𝐶 ∈ ( TermO ‘ 𝐸 ) ↔ ∀ 𝑑 ∈ ( Base ‘ 𝐸 ) ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ 𝐸 ) 𝐶 ) ) ) |
| 27 | 23 26 | mpbird | ⊢ ( 𝜑 → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) |