This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A terminal object of the category of small categories is a terminal category. (Contributed by Zhi Wang, 18-Oct-2025) (Proof shortened by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcterm.e | |- E = ( CatCat ` U ) |
|
| termcterm2. | |- ( ph -> ( U i^i TermCat ) =/= (/) ) |
||
| termcterm2.t | |- ( ph -> C e. ( TermO ` E ) ) |
||
| Assertion | termcterm2 | |- ( ph -> C e. TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm.e | |- E = ( CatCat ` U ) |
|
| 2 | termcterm2. | |- ( ph -> ( U i^i TermCat ) =/= (/) ) |
|
| 3 | termcterm2.t | |- ( ph -> C e. ( TermO ` E ) ) |
|
| 4 | n0 | |- ( ( U i^i TermCat ) =/= (/) <-> E. d d e. ( U i^i TermCat ) ) |
|
| 5 | 2 4 | sylib | |- ( ph -> E. d d e. ( U i^i TermCat ) ) |
| 6 | simpr | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ( U i^i TermCat ) ) |
|
| 7 | 6 | elin2d | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. TermCat ) |
| 8 | 7 | termcthind | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ThinCat ) |
| 9 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 10 | 3 | adantr | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C e. ( TermO ` E ) ) |
| 11 | 9 | termoo2 | |- ( C e. ( TermO ` E ) -> C e. ( Base ` E ) ) |
| 12 | 10 11 | syl | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C e. ( Base ` E ) ) |
| 13 | 1 9 | elbasfv | |- ( C e. ( Base ` E ) -> U e. _V ) |
| 14 | 12 13 | syl | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> U e. _V ) |
| 15 | 6 | elin1d | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. U ) |
| 16 | 7 | termccd | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. Cat ) |
| 17 | 15 16 | elind | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ( U i^i Cat ) ) |
| 18 | 1 9 14 | catcbas | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( Base ` E ) = ( U i^i Cat ) ) |
| 19 | 17 18 | eleqtrrd | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ( Base ` E ) ) |
| 20 | termorcl | |- ( C e. ( TermO ` E ) -> E e. Cat ) |
|
| 21 | 10 20 | syl | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> E e. Cat ) |
| 22 | 1 14 15 7 | termcterm | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ( TermO ` E ) ) |
| 23 | 21 10 22 | termoeu1w | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C ( ~=c ` E ) d ) |
| 24 | 1 9 14 12 19 23 | thincciso4 | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( C e. ThinCat <-> d e. ThinCat ) ) |
| 25 | 8 24 | mpbird | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C e. ThinCat ) |
| 26 | 21 10 22 | termoeu1 | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> E! f f e. ( C ( Iso ` E ) d ) ) |
| 27 | euex | |- ( E! f f e. ( C ( Iso ` E ) d ) -> E. f f e. ( C ( Iso ` E ) d ) ) |
|
| 28 | 26 27 | syl | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> E. f f e. ( C ( Iso ` E ) d ) ) |
| 29 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 30 | eqid | |- ( Base ` d ) = ( Base ` d ) |
|
| 31 | eqid | |- ( Iso ` E ) = ( Iso ` E ) |
|
| 32 | 1 9 29 30 14 12 19 31 | catciso | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( f e. ( C ( Iso ` E ) d ) <-> ( f e. ( ( C Full d ) i^i ( C Faith d ) ) /\ ( 1st ` f ) : ( Base ` C ) -1-1-onto-> ( Base ` d ) ) ) ) |
| 33 | 32 | simplbda | |- ( ( ( ph /\ d e. ( U i^i TermCat ) ) /\ f e. ( C ( Iso ` E ) d ) ) -> ( 1st ` f ) : ( Base ` C ) -1-1-onto-> ( Base ` d ) ) |
| 34 | fvex | |- ( Base ` C ) e. _V |
|
| 35 | 34 | f1oen | |- ( ( 1st ` f ) : ( Base ` C ) -1-1-onto-> ( Base ` d ) -> ( Base ` C ) ~~ ( Base ` d ) ) |
| 36 | 33 35 | syl | |- ( ( ( ph /\ d e. ( U i^i TermCat ) ) /\ f e. ( C ( Iso ` E ) d ) ) -> ( Base ` C ) ~~ ( Base ` d ) ) |
| 37 | 28 36 | exlimddv | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( Base ` C ) ~~ ( Base ` d ) ) |
| 38 | 30 | istermc3 | |- ( d e. TermCat <-> ( d e. ThinCat /\ ( Base ` d ) ~~ 1o ) ) |
| 39 | 7 38 | sylib | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( d e. ThinCat /\ ( Base ` d ) ~~ 1o ) ) |
| 40 | 39 | simprd | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( Base ` d ) ~~ 1o ) |
| 41 | entr | |- ( ( ( Base ` C ) ~~ ( Base ` d ) /\ ( Base ` d ) ~~ 1o ) -> ( Base ` C ) ~~ 1o ) |
|
| 42 | 37 40 41 | syl2anc | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( Base ` C ) ~~ 1o ) |
| 43 | 29 | istermc3 | |- ( C e. TermCat <-> ( C e. ThinCat /\ ( Base ` C ) ~~ 1o ) ) |
| 44 | 25 42 43 | sylanbrc | |- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C e. TermCat ) |
| 45 | 5 44 | exlimddv | |- ( ph -> C e. TermCat ) |