This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincciso2.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| thincciso2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincciso2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| thincciso2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincciso2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincciso4.i | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) | ||
| Assertion | thincciso4 | ⊢ ( 𝜑 → ( 𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincciso2.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | thincciso2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincciso2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | thincciso2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | thincciso2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | thincciso4.i | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) | |
| 7 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 8 | 1 | catccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 | 7 2 9 4 5 | cic | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 11 | 6 10 | mpbid | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 13 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑈 ∈ 𝑉 ) |
| 14 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 15 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 16 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) | |
| 17 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑋 ∈ ThinCat ) | |
| 18 | 1 2 13 14 15 7 16 17 | thincciso3 | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ ThinCat ) |
| 19 | 12 18 | exlimddv | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) → 𝑌 ∈ ThinCat ) |
| 20 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 21 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑈 ∈ 𝑉 ) |
| 22 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 23 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) | |
| 25 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ ThinCat ) | |
| 26 | 1 2 21 22 23 7 24 25 | thincciso2 | ⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑋 ∈ ThinCat ) |
| 27 | 20 26 | exlimddv | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) → 𝑋 ∈ ThinCat ) |
| 28 | 19 27 | impbida | ⊢ ( 𝜑 → ( 𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat ) ) |