This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the category of small categories, a terminal object is equivalent to a terminal category. (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcterm.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | |
| termcterm3.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| termcterm3.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
| termcterm3.1 | ⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ 𝑈 ) | ||
| Assertion | termcterm3 | ⊢ ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | |
| 2 | termcterm3.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | termcterm3.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
| 4 | termcterm3.1 | ⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ 𝑈 ) | |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ TermCat ) → 𝑈 ∈ 𝑉 ) |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ TermCat ) → 𝐶 ∈ 𝑈 ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ TermCat ) → 𝐶 ∈ TermCat ) | |
| 8 | 1 5 6 7 | termcterm | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ TermCat ) → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) |
| 9 | setc1oterm | ⊢ ( SetCat ‘ 1o ) ∈ TermCat | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ TermCat ) |
| 11 | 4 10 | elind | ⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ ( 𝑈 ∩ TermCat ) ) |
| 12 | 11 | ne0d | ⊢ ( 𝜑 → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) | |
| 15 | 1 13 14 | termcterm2 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) → 𝐶 ∈ TermCat ) |
| 16 | 8 15 | impbida | ⊢ ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) ) |