This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for second argument of inner product (compare ipass ). (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipdir.f | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| ipass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| ipass.p | ⊢ × = ( .r ‘ 𝐹 ) | ||
| ipassr.i | ⊢ ∗ = ( *𝑟 ‘ 𝐹 ) | ||
| Assertion | ipassr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐴 , ( 𝐶 · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipdir.f | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | ipass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | ipass.p | ⊢ × = ( .r ‘ 𝐹 ) | |
| 7 | ipassr.i | ⊢ ∗ = ( *𝑟 ‘ 𝐹 ) | |
| 8 | simpl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝑊 ∈ PreHil ) | |
| 9 | simpr3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐶 ∈ 𝐾 ) | |
| 10 | simpr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐵 ∈ 𝑉 ) | |
| 11 | simpr1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐴 ∈ 𝑉 ) | |
| 12 | 1 2 3 4 5 6 | ipass | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) → ( ( 𝐶 · 𝐵 ) , 𝐴 ) = ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) |
| 13 | 8 9 10 11 12 | syl13anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐶 · 𝐵 ) , 𝐴 ) = ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( ( 𝐶 · 𝐵 ) , 𝐴 ) ) = ( ∗ ‘ ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) ) |
| 15 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝑊 ∈ LMod ) |
| 17 | 3 1 5 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐶 · 𝐵 ) ∈ 𝑉 ) |
| 18 | 16 9 10 17 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐶 · 𝐵 ) ∈ 𝑉 ) |
| 19 | 1 2 3 7 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐶 · 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ∗ ‘ ( ( 𝐶 · 𝐵 ) , 𝐴 ) ) = ( 𝐴 , ( 𝐶 · 𝐵 ) ) ) |
| 20 | 8 18 11 19 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( ( 𝐶 · 𝐵 ) , 𝐴 ) ) = ( 𝐴 , ( 𝐶 · 𝐵 ) ) ) |
| 21 | 1 | phlsrng | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐹 ∈ *-Ring ) |
| 23 | 1 2 3 4 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 , 𝐴 ) ∈ 𝐾 ) |
| 24 | 8 10 11 23 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐵 , 𝐴 ) ∈ 𝐾 ) |
| 25 | 7 4 6 | srngmul | ⊢ ( ( 𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ∧ ( 𝐵 , 𝐴 ) ∈ 𝐾 ) → ( ∗ ‘ ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 , 𝐴 ) ) × ( ∗ ‘ 𝐶 ) ) ) |
| 26 | 22 9 24 25 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 , 𝐴 ) ) × ( ∗ ‘ 𝐶 ) ) ) |
| 27 | 14 20 26 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐴 , ( 𝐶 · 𝐵 ) ) = ( ( ∗ ‘ ( 𝐵 , 𝐴 ) ) × ( ∗ ‘ 𝐶 ) ) ) |
| 28 | 1 2 3 7 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐵 , 𝐴 ) ) = ( 𝐴 , 𝐵 ) ) |
| 29 | 8 10 11 28 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( 𝐵 , 𝐴 ) ) = ( 𝐴 , 𝐵 ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( ∗ ‘ ( 𝐵 , 𝐴 ) ) × ( ∗ ‘ 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ 𝐶 ) ) ) |
| 31 | 27 30 | eqtrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐴 , ( 𝐶 · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ 𝐶 ) ) ) |