This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | clmmul | ⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | fvex | ⊢ ( Base ‘ 𝐹 ) ∈ V | |
| 3 | eqid | ⊢ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) | |
| 4 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 5 | 3 4 | ressmulr | ⊢ ( ( Base ‘ 𝐹 ) ∈ V → · = ( .r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 6 | 2 5 | ax-mp | ⊢ · = ( .r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 8 | 1 7 | clmsca | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑊 ∈ ℂMod → ( .r ‘ 𝐹 ) = ( .r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 10 | 6 9 | eqtr4id | ⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |