This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two words have a common subword (starting at the same position with the same length) iff they have the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018) (Proof shortened by AV, 7-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdspsleq | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdsb0eq | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 𝑁 ≤ 𝑀 ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) |
| 3 | 2 | ancoms | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) |
| 4 | 3 | 3adantr3 | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) |
| 5 | ral0 | ⊢ ∀ 𝑖 ∈ ∅ ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) | |
| 6 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 7 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 8 | fzon | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 ↔ ( 𝑀 ..^ 𝑁 ) = ∅ ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑀 ↔ ( 𝑀 ..^ 𝑁 ) = ∅ ) ) |
| 10 | 9 | biimpa | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ( 𝑀 ..^ 𝑁 ) = ∅ ) |
| 11 | 10 | raleqdv | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ( ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ∅ ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 12 | 5 11 | mpbiri | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) |
| 13 | 12 | ex | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑀 → ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( 𝑁 ≤ 𝑀 → ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 15 | 14 | impcom | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) |
| 16 | 4 15 | 2thd | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 17 | swrdcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∈ Word 𝑉 ) | |
| 18 | swrdcl | ⊢ ( 𝑈 ∈ Word 𝑉 → ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ∈ Word 𝑉 ) | |
| 19 | eqwrd | ⊢ ( ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∈ Word 𝑉 ∧ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ∈ Word 𝑉 ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ↔ ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ↔ ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ↔ ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( ¬ 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ↔ ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) ) |
| 23 | swrdsbslen | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) | |
| 24 | 23 | adantl | ⊢ ( ( ¬ 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
| 25 | 24 | biantrurd | ⊢ ( ( ¬ 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) ) |
| 26 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 27 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 28 | ltnle | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 < 𝑁 ↔ ¬ 𝑁 ≤ 𝑀 ) ) | |
| 29 | ltle | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 < 𝑁 → 𝑀 ≤ 𝑁 ) ) | |
| 30 | 28 29 | sylbird | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁 ) ) |
| 31 | 26 27 30 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁 ) ) |
| 32 | 31 | 3ad2ant2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁 ) ) |
| 33 | simpl1l | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑊 ∈ Word 𝑉 ) | |
| 34 | simpl2l | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ℕ0 ) | |
| 35 | 6 7 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 36 | 35 | 3ad2ant2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 37 | 36 | anim1i | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) ) |
| 38 | df-3an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) ) | |
| 39 | 37 38 | sylibr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
| 40 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) | |
| 41 | 39 40 | sylibr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 42 | 34 41 | jca | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 43 | simpl3l | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) | |
| 44 | swrdlen2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( 𝑁 − 𝑀 ) ) | |
| 45 | 33 42 43 44 | syl3anc | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( 𝑁 − 𝑀 ) ) |
| 46 | 45 | oveq2d | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) = ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 47 | 46 | raleqdv | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) |
| 48 | 0zd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → 0 ∈ ℤ ) | |
| 49 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) | |
| 50 | 7 6 49 | syl2anr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) |
| 51 | 50 | 3ad2ant2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) |
| 52 | 6 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℤ ) |
| 53 | 52 | 3ad2ant2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → 𝑀 ∈ ℤ ) |
| 54 | fzoshftral | ⊢ ( ( 0 ∈ ℤ ∧ ( 𝑁 − 𝑀 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) | |
| 55 | 48 51 53 54 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) |
| 57 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 58 | nn0cn | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) | |
| 59 | addlid | ⊢ ( 𝑀 ∈ ℂ → ( 0 + 𝑀 ) = 𝑀 ) | |
| 60 | 59 | adantl | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 0 + 𝑀 ) = 𝑀 ) |
| 61 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ) | |
| 62 | 60 61 | oveq12d | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( 𝑀 ..^ 𝑁 ) ) |
| 63 | 57 58 62 | syl2anr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( 𝑀 ..^ 𝑁 ) ) |
| 64 | 63 | 3ad2ant2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( 𝑀 ..^ 𝑁 ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( 𝑀 ..^ 𝑁 ) ) |
| 66 | 65 | raleqdv | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ∀ 𝑖 ∈ ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) |
| 67 | ovex | ⊢ ( 𝑖 − 𝑀 ) ∈ V | |
| 68 | sbceqg | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ( [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ) ) | |
| 69 | csbfv2g | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ 𝑗 ) ) | |
| 70 | csbvarg | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ 𝑗 = ( 𝑖 − 𝑀 ) ) | |
| 71 | 70 | fveq2d | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ 𝑗 ) = ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) ) |
| 72 | 69 71 | eqtrd | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) ) |
| 73 | csbfv2g | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ 𝑗 ) ) | |
| 74 | 70 | fveq2d | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) ) |
| 75 | 73 74 | eqtrd | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) ) |
| 76 | 72 75 | eqeq12d | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ( ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ⦋ ( 𝑖 − 𝑀 ) / 𝑗 ⦌ ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) ) ) |
| 77 | 68 76 | bitrd | ⊢ ( ( 𝑖 − 𝑀 ) ∈ V → ( [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) ) ) |
| 78 | 67 77 | mp1i | ⊢ ( ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) ) ) |
| 79 | 33 42 43 | 3jca | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 80 | swrdfv2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 81 | 79 80 | sylan | ⊢ ( ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) = ( 𝑊 ‘ 𝑖 ) ) |
| 82 | simpl1r | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑈 ∈ Word 𝑉 ) | |
| 83 | simpl3r | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) | |
| 84 | 82 42 83 | 3jca | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) |
| 85 | swrdfv2 | ⊢ ( ( ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) = ( 𝑈 ‘ 𝑖 ) ) | |
| 86 | 84 85 | sylan | ⊢ ( ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) = ( 𝑈 ‘ 𝑖 ) ) |
| 87 | 81 86 | eqeq12d | ⊢ ( ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ ( 𝑖 − 𝑀 ) ) ↔ ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 88 | 78 87 | bitrd | ⊢ ( ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 89 | 88 | ralbidva | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 90 | 66 89 | bitrd | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ∀ 𝑖 ∈ ( ( 0 + 𝑀 ) ..^ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) [ ( 𝑖 − 𝑀 ) / 𝑗 ] ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 91 | 47 56 90 | 3bitrd | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 92 | 91 | ex | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( 𝑀 ≤ 𝑁 → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 93 | 32 92 | syld | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ¬ 𝑁 ≤ 𝑀 → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 94 | 93 | impcom | ⊢ ( ( ¬ 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) = ( ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 95 | 22 25 94 | 3bitr2d | ⊢ ( ( ¬ 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 96 | 16 95 | pm2.61ian | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ↔ ∀ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |