This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Length of an extracted subword. (Contributed by AV, 5-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdlen2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ) = ( 𝐿 − 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝑆 ∈ Word 𝑉 ) | |
| 2 | simpl | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ∈ ℕ0 ) | |
| 3 | eluznn0 | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐿 ∈ ℕ0 ) | |
| 4 | eluzle | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) → 𝐹 ≤ 𝐿 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ≤ 𝐿 ) |
| 6 | 2 3 5 | 3jca | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) |
| 8 | elfz2nn0 | ⊢ ( 𝐹 ∈ ( 0 ... 𝐿 ) ↔ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐹 ∈ ( 0 ... 𝐿 ) ) |
| 10 | 3 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐿 ∈ ℕ0 ) |
| 11 | lencl | ⊢ ( 𝑆 ∈ Word 𝑉 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 13 | simp3 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) | |
| 14 | 10 12 13 | 3jca | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 15 | elfz2nn0 | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 17 | swrdlen | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ) = ( 𝐿 − 𝐹 ) ) | |
| 18 | 1 9 16 17 | syl3anc | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ) = ( 𝐿 − 𝐹 ) ) |