This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrds1 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdcl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ∈ Word 𝐴 ) | |
| 2 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝐴 ) | |
| 3 | elfzouz | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ( ℤ≥ ‘ 0 ) ) |
| 5 | elfzoelz | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℤ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ℤ ) |
| 7 | uzid | ⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ( ℤ≥ ‘ 𝐼 ) ) | |
| 8 | peano2uz | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝐼 ) → ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 𝐼 ) ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 10 | elfzuzb | ⊢ ( 𝐼 ∈ ( 0 ... ( 𝐼 + 1 ) ) ↔ ( 𝐼 ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 𝐼 ) ) ) | |
| 11 | 4 9 10 | sylanbrc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 1 ) ) ) |
| 12 | fzofzp1 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 14 | swrdlen | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ... ( 𝐼 + 1 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ) = ( ( 𝐼 + 1 ) − 𝐼 ) ) | |
| 15 | 2 11 13 14 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ) = ( ( 𝐼 + 1 ) − 𝐼 ) ) |
| 16 | 6 | zcnd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ℂ ) |
| 17 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 18 | pncan2 | ⊢ ( ( 𝐼 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐼 + 1 ) − 𝐼 ) = 1 ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 + 1 ) − 𝐼 ) = 1 ) |
| 20 | 15 19 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ) = 1 ) |
| 21 | eqs1 | ⊢ ( ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ∈ Word 𝐴 ∧ ( ♯ ‘ ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ) = 1 ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) = 〈“ ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ‘ 0 ) ”〉 ) | |
| 22 | 1 20 21 | syl2an2r | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) = 〈“ ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ‘ 0 ) ”〉 ) |
| 23 | 0z | ⊢ 0 ∈ ℤ | |
| 24 | snidg | ⊢ ( 0 ∈ ℤ → 0 ∈ { 0 } ) | |
| 25 | 23 24 | ax-mp | ⊢ 0 ∈ { 0 } |
| 26 | 19 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ( 𝐼 + 1 ) − 𝐼 ) ) = ( 0 ..^ 1 ) ) |
| 27 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 28 | 26 27 | eqtrdi | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ( 𝐼 + 1 ) − 𝐼 ) ) = { 0 } ) |
| 29 | 25 28 | eleqtrrid | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 0 ∈ ( 0 ..^ ( ( 𝐼 + 1 ) − 𝐼 ) ) ) |
| 30 | swrdfv | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ... ( 𝐼 + 1 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 0 ∈ ( 0 ..^ ( ( 𝐼 + 1 ) − 𝐼 ) ) ) → ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ‘ 0 ) = ( 𝑊 ‘ ( 0 + 𝐼 ) ) ) | |
| 31 | 2 11 13 29 30 | syl31anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ‘ 0 ) = ( 𝑊 ‘ ( 0 + 𝐼 ) ) ) |
| 32 | addlid | ⊢ ( 𝐼 ∈ ℂ → ( 0 + 𝐼 ) = 𝐼 ) | |
| 33 | 32 | eqcomd | ⊢ ( 𝐼 ∈ ℂ → 𝐼 = ( 0 + 𝐼 ) ) |
| 34 | 16 33 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 = ( 0 + 𝐼 ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( 0 + 𝐼 ) ) ) |
| 36 | 31 35 | eqtr4d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ‘ 0 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 37 | 36 | s1eqd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 〈“ ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ‘ 0 ) ”〉 = 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) |
| 38 | 22 37 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) |