This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbvarg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | df-csb | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝑥 } | |
| 3 | sbcel2gv | ⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 4 | 3 | eqabcdv | ⊢ ( 𝑦 ∈ V → { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝑥 } = 𝑦 ) |
| 5 | 2 4 | eqtrid | ⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = 𝑦 ) |
| 6 | 5 | elv | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = 𝑦 |
| 7 | 6 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = ⦋ 𝐴 / 𝑦 ⦌ 𝑦 |
| 8 | csbcow | ⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = ⦋ 𝐴 / 𝑥 ⦌ 𝑥 | |
| 9 | df-csb | ⊢ ⦋ 𝐴 / 𝑦 ⦌ 𝑦 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝑦 } | |
| 10 | 7 8 9 | 3eqtr3i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝑦 } |
| 11 | sbcel2gv | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 12 | 11 | eqabcdv | ⊢ ( 𝐴 ∈ V → { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝑦 } = 𝐴 ) |
| 13 | 10 12 | eqtrid | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = 𝐴 ) |
| 14 | 1 13 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = 𝐴 ) |