This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subwords with the same bounds have the same length. (Contributed by AV, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdsbslen | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ) | |
| 2 | simpr2 | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) | |
| 3 | simpl | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → 𝑁 ≤ 𝑀 ) | |
| 4 | swrdsb0eq | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
| 7 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 8 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 9 | ltnle | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 < 𝑁 ↔ ¬ 𝑁 ≤ 𝑀 ) ) | |
| 10 | ltle | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 < 𝑁 → 𝑀 ≤ 𝑁 ) ) | |
| 11 | 9 10 | sylbird | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁 ) ) |
| 12 | 7 8 11 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁 ) ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁 ) ) |
| 14 | simpl1l | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑊 ∈ Word 𝑉 ) | |
| 15 | simpl2l | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ℕ0 ) | |
| 16 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 17 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 18 | 16 17 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 20 | 19 | anim1i | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) ) |
| 21 | df-3an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
| 23 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) | |
| 24 | 22 23 | sylibr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 25 | simpl3l | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) | |
| 26 | swrdlen2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( 𝑁 − 𝑀 ) ) | |
| 27 | 14 15 24 25 26 | syl121anc | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( 𝑁 − 𝑀 ) ) |
| 28 | simpl1r | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑈 ∈ Word 𝑉 ) | |
| 29 | simpl3r | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) | |
| 30 | swrdlen2 | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) → ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) = ( 𝑁 − 𝑀 ) ) | |
| 31 | 28 15 24 29 30 | syl121anc | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) = ( 𝑁 − 𝑀 ) ) |
| 32 | 27 31 | eqtr4d | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 ≤ 𝑁 ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
| 33 | 32 | ex | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( 𝑀 ≤ 𝑁 → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) ) |
| 34 | 13 33 | syld | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ¬ 𝑁 ≤ 𝑀 → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) ) |
| 35 | 34 | impcom | ⊢ ( ( ¬ 𝑁 ≤ 𝑀 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
| 36 | 6 35 | pm2.61ian | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ♯ ‘ ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) ) |