This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdfv2 | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ ( 𝑋 − 𝐹 ) ) = ( 𝑆 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝑆 ∈ Word 𝑉 ) | |
| 2 | simpl | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ∈ ℕ0 ) | |
| 3 | eluznn0 | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐿 ∈ ℕ0 ) | |
| 4 | eluzle | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) → 𝐹 ≤ 𝐿 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ≤ 𝐿 ) |
| 6 | 2 3 5 | 3jca | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) |
| 8 | elfz2nn0 | ⊢ ( 𝐹 ∈ ( 0 ... 𝐿 ) ↔ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐹 ∈ ( 0 ... 𝐿 ) ) |
| 10 | 3 | anim1i | ⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 12 | lencl | ⊢ ( 𝑆 ∈ Word 𝑉 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 14 | fznn0 | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) ) |
| 16 | 11 15 | mpbird | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 17 | 1 9 16 | 3jca | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 19 | nn0cn | ⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℂ ) | |
| 20 | eluzelcn | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) → 𝐿 ∈ ℂ ) | |
| 21 | pncan3 | ⊢ ( ( 𝐹 ∈ ℂ ∧ 𝐿 ∈ ℂ ) → ( 𝐹 + ( 𝐿 − 𝐹 ) ) = 𝐿 ) | |
| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( 𝐹 + ( 𝐿 − 𝐹 ) ) = 𝐿 ) |
| 23 | 22 | eqcomd | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐿 = ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐿 = ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) |
| 25 | 24 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐹 ..^ 𝐿 ) = ( 𝐹 ..^ ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) ) |
| 26 | 25 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ↔ 𝑋 ∈ ( 𝐹 ..^ ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) ) ) |
| 27 | 26 | biimpa | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → 𝑋 ∈ ( 𝐹 ..^ ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) ) |
| 28 | eluzelz | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) → 𝐿 ∈ ℤ ) | |
| 29 | 28 | adantl | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐿 ∈ ℤ ) |
| 30 | nn0z | ⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℤ ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ∈ ℤ ) |
| 32 | 29 31 | zsubcld | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( 𝐿 − 𝐹 ) ∈ ℤ ) |
| 33 | 32 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 − 𝐹 ) ∈ ℤ ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( 𝐿 − 𝐹 ) ∈ ℤ ) |
| 35 | fzosubel3 | ⊢ ( ( 𝑋 ∈ ( 𝐹 ..^ ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) ∧ ( 𝐿 − 𝐹 ) ∈ ℤ ) → ( 𝑋 − 𝐹 ) ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) | |
| 36 | 27 34 35 | syl2anc | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( 𝑋 − 𝐹 ) ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) |
| 37 | swrdfv | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ ( 𝑋 − 𝐹 ) ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ ( 𝑋 − 𝐹 ) ) = ( 𝑆 ‘ ( ( 𝑋 − 𝐹 ) + 𝐹 ) ) ) | |
| 38 | 18 36 37 | syl2anc | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ ( 𝑋 − 𝐹 ) ) = ( 𝑆 ‘ ( ( 𝑋 − 𝐹 ) + 𝐹 ) ) ) |
| 39 | elfzoelz | ⊢ ( 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) → 𝑋 ∈ ℤ ) | |
| 40 | 39 | zcnd | ⊢ ( 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) → 𝑋 ∈ ℂ ) |
| 41 | 19 | adantr | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ∈ ℂ ) |
| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐹 ∈ ℂ ) |
| 43 | npcan | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝐹 ∈ ℂ ) → ( ( 𝑋 − 𝐹 ) + 𝐹 ) = 𝑋 ) | |
| 44 | 40 42 43 | syl2anr | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( ( 𝑋 − 𝐹 ) + 𝐹 ) = 𝑋 ) |
| 45 | 44 | fveq2d | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( 𝑆 ‘ ( ( 𝑋 − 𝐹 ) + 𝐹 ) ) = ( 𝑆 ‘ 𝑋 ) ) |
| 46 | 38 45 | eqtrd | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ ( 𝑋 − 𝐹 ) ) = ( 𝑆 ‘ 𝑋 ) ) |