This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subwords with the same bounds are equal if the range is not valid. (Contributed by AV, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdsb0eq | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 3 | 2 | ad2antrl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑀 ∈ ℤ ) |
| 4 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 5 | 4 | ad2antll | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℤ ) |
| 6 | swrdlend | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ∅ ) ) | |
| 7 | 1 3 5 6 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑁 ≤ 𝑀 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ∅ ) ) |
| 8 | 7 | 3impia | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ∅ ) |
| 9 | simplr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑈 ∈ Word 𝑉 ) | |
| 10 | swrdlend | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 → ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) = ∅ ) ) | |
| 11 | 9 3 5 10 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑁 ≤ 𝑀 → ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) = ∅ ) ) |
| 12 | 11 | 3impia | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) = ∅ ) |
| 13 | 8 12 | eqtr4d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑀 ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑈 substr 〈 𝑀 , 𝑁 〉 ) ) |