This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbceqg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝐵 = 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ) ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ) | |
| 3 | 2 | abbidv | ⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
| 4 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) | |
| 5 | 4 | abbidv | ⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
| 6 | 3 5 | eqeq12d | ⊢ ( 𝑧 = 𝐴 → ( { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
| 7 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 | |
| 8 | 7 | nfab | ⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } |
| 9 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 | |
| 10 | 9 | nfab | ⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } |
| 11 | 8 10 | nfeq | ⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } |
| 12 | sbab | ⊢ ( 𝑥 = 𝑧 → 𝐵 = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ) | |
| 13 | sbab | ⊢ ( 𝑥 = 𝑧 → 𝐶 = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥 = 𝑧 → ( 𝐵 = 𝐶 ↔ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
| 15 | 11 14 | sbiev | ⊢ ( [ 𝑧 / 𝑥 ] 𝐵 = 𝐶 ↔ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
| 16 | 1 6 15 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
| 17 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } | |
| 18 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } | |
| 19 | 17 18 | eqeq12i | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
| 20 | 16 19 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |