This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a sequence f in X such that the image of the points in the bounded set A converges to the supremum S of the set. Similar to Equation 4 of Kreyszig p. 144. The proof uses countable choice ax-cc . (Contributed by Mario Carneiro, 15-Feb-2013) (Proof shortened by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supcvg.1 | ⊢ 𝑋 ∈ V | |
| supcvg.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | ||
| supcvg.3 | ⊢ 𝑅 = ( 𝑛 ∈ ℕ ↦ ( 𝑆 − ( 1 / 𝑛 ) ) ) | ||
| supcvg.4 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | ||
| supcvg.5 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝐴 ) | ||
| supcvg.6 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| supcvg.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | ||
| Assertion | supcvg | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ( 𝐹 ∘ 𝑓 ) ⇝ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supcvg.1 | ⊢ 𝑋 ∈ V | |
| 2 | supcvg.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | |
| 3 | supcvg.3 | ⊢ 𝑅 = ( 𝑛 ∈ ℕ ↦ ( 𝑆 − ( 1 / 𝑛 ) ) ) | |
| 4 | supcvg.4 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | |
| 5 | supcvg.5 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝐴 ) | |
| 6 | supcvg.6 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 7 | supcvg.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 8 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝑆 − ( 1 / 𝑛 ) ) = ( 𝑆 − ( 1 / 𝑘 ) ) ) |
| 10 | ovex | ⊢ ( 𝑆 − ( 1 / 𝑘 ) ) ∈ V | |
| 11 | 9 3 10 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝑅 ‘ 𝑘 ) = ( 𝑆 − ( 1 / 𝑘 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑅 ‘ 𝑘 ) = ( 𝑆 − ( 1 / 𝑘 ) ) ) |
| 13 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝐴 → 𝐹 : 𝑋 ⟶ 𝐴 ) | |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝐴 ) |
| 15 | feq3 | ⊢ ( 𝐴 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝐴 ↔ 𝐹 : 𝑋 ⟶ ∅ ) ) | |
| 16 | 14 15 | syl5ibcom | ⊢ ( 𝜑 → ( 𝐴 = ∅ → 𝐹 : 𝑋 ⟶ ∅ ) ) |
| 17 | f00 | ⊢ ( 𝐹 : 𝑋 ⟶ ∅ ↔ ( 𝐹 = ∅ ∧ 𝑋 = ∅ ) ) | |
| 18 | 17 | simprbi | ⊢ ( 𝐹 : 𝑋 ⟶ ∅ → 𝑋 = ∅ ) |
| 19 | 16 18 | syl6 | ⊢ ( 𝜑 → ( 𝐴 = ∅ → 𝑋 = ∅ ) ) |
| 20 | 19 | necon3d | ⊢ ( 𝜑 → ( 𝑋 ≠ ∅ → 𝐴 ≠ ∅ ) ) |
| 21 | 4 20 | mpd | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 22 | 6 21 7 | suprcld | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 23 | 2 22 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 24 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 25 | 24 | rpreccld | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 26 | ltsubrp | ⊢ ( ( 𝑆 ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ+ ) → ( 𝑆 − ( 1 / 𝑘 ) ) < 𝑆 ) | |
| 27 | 23 25 26 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 − ( 1 / 𝑘 ) ) < 𝑆 ) |
| 28 | 12 27 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑅 ‘ 𝑘 ) < 𝑆 ) |
| 29 | 28 2 | breqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑅 ‘ 𝑘 ) < sup ( 𝐴 , ℝ , < ) ) |
| 30 | 6 21 7 | 3jca | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 31 | nnrecre | ⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) | |
| 32 | resubcl | ⊢ ( ( 𝑆 ∈ ℝ ∧ ( 1 / 𝑛 ) ∈ ℝ ) → ( 𝑆 − ( 1 / 𝑛 ) ) ∈ ℝ ) | |
| 33 | 23 31 32 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 34 | 33 3 | fmptd | ⊢ ( 𝜑 → 𝑅 : ℕ ⟶ ℝ ) |
| 35 | 34 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑅 ‘ 𝑘 ) ∈ ℝ ) |
| 36 | suprlub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝑅 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝑅 ‘ 𝑘 ) < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) < 𝑧 ) ) | |
| 37 | 30 35 36 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑅 ‘ 𝑘 ) < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) < 𝑧 ) ) |
| 38 | 29 37 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) < 𝑧 ) |
| 39 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
| 40 | 39 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 41 | ltle | ⊢ ( ( ( 𝑅 ‘ 𝑘 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑅 ‘ 𝑘 ) < 𝑧 → ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ) ) | |
| 42 | 35 40 41 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑅 ‘ 𝑘 ) < 𝑧 → ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ) ) |
| 43 | 42 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) < 𝑧 → ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ) ) |
| 44 | 38 43 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ) |
| 45 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝐴 → ran 𝐹 = 𝐴 ) | |
| 46 | 5 45 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐴 ) |
| 47 | 46 | rexeqdv | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ran 𝐹 ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ) ) |
| 48 | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ 𝐴 → 𝐹 Fn 𝑋 ) | |
| 49 | breq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ↔ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 50 | 49 | rexrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∃ 𝑧 ∈ ran 𝐹 ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 51 | 14 48 50 | 3syl | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ran 𝐹 ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 52 | 47 51 | bitr3d | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝑅 ‘ 𝑘 ) ≤ 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 54 | 44 53 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑋 ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 55 | 54 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ∃ 𝑥 ∈ 𝑋 ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 56 | nnenom | ⊢ ℕ ≈ ω | |
| 57 | fveq2 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 58 | 57 | breq2d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 59 | 1 56 58 | axcc4 | ⊢ ( ∀ 𝑘 ∈ ℕ ∃ 𝑥 ∈ 𝑋 ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 60 | 55 59 | syl | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 61 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 62 | 1zzd | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → 1 ∈ ℤ ) | |
| 63 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 64 | 23 | recnd | ⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 65 | 1z | ⊢ 1 ∈ ℤ | |
| 66 | 61 | eqimss2i | ⊢ ( ℤ≥ ‘ 1 ) ⊆ ℕ |
| 67 | nnex | ⊢ ℕ ∈ V | |
| 68 | 66 67 | climconst2 | ⊢ ( ( 𝑆 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 𝑆 } ) ⇝ 𝑆 ) |
| 69 | 64 65 68 | sylancl | ⊢ ( 𝜑 → ( ℕ × { 𝑆 } ) ⇝ 𝑆 ) |
| 70 | 67 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑆 − ( 1 / 𝑛 ) ) ) ∈ V |
| 71 | 3 70 | eqeltri | ⊢ 𝑅 ∈ V |
| 72 | 71 | a1i | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 73 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 74 | divcnv | ⊢ ( 1 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) | |
| 75 | 73 74 | mp1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) |
| 76 | fvconst2g | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ) | |
| 77 | 23 76 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ) |
| 78 | 64 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑆 ∈ ℂ ) |
| 79 | 77 78 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝑆 } ) ‘ 𝑘 ) ∈ ℂ ) |
| 80 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) | |
| 81 | ovex | ⊢ ( 1 / 𝑘 ) ∈ V | |
| 82 | 8 80 81 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 83 | 82 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 84 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 85 | 84 | recnd | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℂ ) |
| 86 | 85 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 87 | 83 86 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 88 | 77 83 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 𝑆 } ) ‘ 𝑘 ) − ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ) = ( 𝑆 − ( 1 / 𝑘 ) ) ) |
| 89 | 12 88 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑅 ‘ 𝑘 ) = ( ( ( ℕ × { 𝑆 } ) ‘ 𝑘 ) − ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 90 | 61 63 69 72 75 79 87 89 | climsub | ⊢ ( 𝜑 → 𝑅 ⇝ ( 𝑆 − 0 ) ) |
| 91 | 64 | subid1d | ⊢ ( 𝜑 → ( 𝑆 − 0 ) = 𝑆 ) |
| 92 | 90 91 | breqtrd | ⊢ ( 𝜑 → 𝑅 ⇝ 𝑆 ) |
| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → 𝑅 ⇝ 𝑆 ) |
| 94 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → 𝐹 : 𝑋 ⟶ 𝐴 ) |
| 95 | fex | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝐴 ∧ 𝑋 ∈ V ) → 𝐹 ∈ V ) | |
| 96 | 94 1 95 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → 𝐹 ∈ V ) |
| 97 | vex | ⊢ 𝑓 ∈ V | |
| 98 | coexg | ⊢ ( ( 𝐹 ∈ V ∧ 𝑓 ∈ V ) → ( 𝐹 ∘ 𝑓 ) ∈ V ) | |
| 99 | 96 97 98 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → ( 𝐹 ∘ 𝑓 ) ∈ V ) |
| 100 | 34 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → 𝑅 : ℕ ⟶ ℝ ) |
| 101 | 100 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
| 102 | 14 6 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 103 | fco | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ 𝑓 : ℕ ⟶ 𝑋 ) → ( 𝐹 ∘ 𝑓 ) : ℕ ⟶ ℝ ) | |
| 104 | 102 103 | sylan | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) → ( 𝐹 ∘ 𝑓 ) : ℕ ⟶ ℝ ) |
| 105 | 104 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → ( 𝐹 ∘ 𝑓 ) : ℕ ⟶ ℝ ) |
| 106 | 105 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℝ ) |
| 107 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑚 ) ) | |
| 108 | 2fveq3 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ) | |
| 109 | 107 108 | breq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ↔ ( 𝑅 ‘ 𝑚 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 110 | 109 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑅 ‘ 𝑚 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 111 | 110 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑅 ‘ 𝑚 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 112 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → 𝑓 : ℕ ⟶ 𝑋 ) | |
| 113 | fvco3 | ⊢ ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ) | |
| 114 | 112 113 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 115 | 111 114 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑚 ) ) |
| 116 | 30 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 117 | 112 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝑋 ) |
| 118 | 94 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ 𝐴 ) |
| 119 | 117 118 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ 𝐴 ) |
| 120 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 121 | 116 119 120 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ sup ( 𝐴 , ℝ , < ) ) |
| 122 | 121 2 | breqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑚 ) ) ≤ 𝑆 ) |
| 123 | 114 122 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑚 ) ≤ 𝑆 ) |
| 124 | 61 62 93 99 101 106 115 123 | climsqz | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → ( 𝐹 ∘ 𝑓 ) ⇝ 𝑆 ) |
| 125 | 124 | ex | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑋 ) → ( ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) → ( 𝐹 ∘ 𝑓 ) ⇝ 𝑆 ) ) |
| 126 | 125 | imdistanda | ⊢ ( 𝜑 → ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → ( 𝑓 : ℕ ⟶ 𝑋 ∧ ( 𝐹 ∘ 𝑓 ) ⇝ 𝑆 ) ) ) |
| 127 | 126 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝑅 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ( 𝐹 ∘ 𝑓 ) ⇝ 𝑆 ) ) ) |
| 128 | 60 127 | mpd | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ( 𝐹 ∘ 𝑓 ) ⇝ 𝑆 ) ) |