This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Auxiliary theorem for applications of supcvg . Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcvg.1 | ⊢ 𝑅 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } | |
| infcvg.2 | ⊢ ( 𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ ) | ||
| infcvg.3 | ⊢ 𝑍 ∈ 𝑋 | ||
| infcvg.4 | ⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | ||
| Assertion | infcvgaux1i | ⊢ ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcvg.1 | ⊢ 𝑅 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } | |
| 2 | infcvg.2 | ⊢ ( 𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ ) | |
| 3 | infcvg.3 | ⊢ 𝑍 ∈ 𝑋 | |
| 4 | infcvg.4 | ⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
| 5 | 2 | renegcld | ⊢ ( 𝑦 ∈ 𝑋 → - 𝐴 ∈ ℝ ) |
| 6 | eleq1 | ⊢ ( 𝑥 = - 𝐴 → ( 𝑥 ∈ ℝ ↔ - 𝐴 ∈ ℝ ) ) | |
| 7 | 5 6 | syl5ibrcom | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝑥 = - 𝐴 → 𝑥 ∈ ℝ ) ) |
| 8 | 7 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 → 𝑥 ∈ ℝ ) |
| 9 | 8 | abssi | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } ⊆ ℝ |
| 10 | 1 9 | eqsstri | ⊢ 𝑅 ⊆ ℝ |
| 11 | eqid | ⊢ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 | |
| 12 | 11 | nfth | ⊢ Ⅎ 𝑦 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 |
| 13 | csbeq1a | ⊢ ( 𝑦 = 𝑍 → 𝐴 = ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ) | |
| 14 | 13 | negeqd | ⊢ ( 𝑦 = 𝑍 → - 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑦 = 𝑍 → ( - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ↔ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ) ) |
| 16 | 12 15 | rspce | ⊢ ( ( 𝑍 ∈ 𝑋 ∧ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ) → ∃ 𝑦 ∈ 𝑋 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ) |
| 17 | 3 11 16 | mp2an | ⊢ ∃ 𝑦 ∈ 𝑋 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 |
| 18 | negex | ⊢ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ∈ V | |
| 19 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑍 / 𝑦 ⦌ 𝐴 | |
| 20 | 19 | nfneg | ⊢ Ⅎ 𝑦 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 |
| 21 | 20 | nfeq2 | ⊢ Ⅎ 𝑦 𝑥 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 |
| 22 | eqeq1 | ⊢ ( 𝑥 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 → ( 𝑥 = - 𝐴 ↔ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ) ) | |
| 23 | 21 22 | rexbid | ⊢ ( 𝑥 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 ↔ ∃ 𝑦 ∈ 𝑋 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ) ) |
| 24 | 18 23 | elab | ⊢ ( - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } ↔ ∃ 𝑦 ∈ 𝑋 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ) |
| 25 | 17 24 | mpbir | ⊢ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } |
| 26 | 25 1 | eleqtrri | ⊢ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ∈ 𝑅 |
| 27 | 26 | ne0ii | ⊢ 𝑅 ≠ ∅ |
| 28 | 10 27 4 | 3pm3.2i | ⊢ ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 ) |