This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a sequence f in X such that the image of the points in the bounded set A converges to the supremum S of the set. Similar to Equation 4 of Kreyszig p. 144. The proof uses countable choice ax-cc . (Contributed by Mario Carneiro, 15-Feb-2013) (Proof shortened by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supcvg.1 | |- X e. _V |
|
| supcvg.2 | |- S = sup ( A , RR , < ) |
||
| supcvg.3 | |- R = ( n e. NN |-> ( S - ( 1 / n ) ) ) |
||
| supcvg.4 | |- ( ph -> X =/= (/) ) |
||
| supcvg.5 | |- ( ph -> F : X -onto-> A ) |
||
| supcvg.6 | |- ( ph -> A C_ RR ) |
||
| supcvg.7 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
||
| Assertion | supcvg | |- ( ph -> E. f ( f : NN --> X /\ ( F o. f ) ~~> S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supcvg.1 | |- X e. _V |
|
| 2 | supcvg.2 | |- S = sup ( A , RR , < ) |
|
| 3 | supcvg.3 | |- R = ( n e. NN |-> ( S - ( 1 / n ) ) ) |
|
| 4 | supcvg.4 | |- ( ph -> X =/= (/) ) |
|
| 5 | supcvg.5 | |- ( ph -> F : X -onto-> A ) |
|
| 6 | supcvg.6 | |- ( ph -> A C_ RR ) |
|
| 7 | supcvg.7 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
|
| 8 | oveq2 | |- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
|
| 9 | 8 | oveq2d | |- ( n = k -> ( S - ( 1 / n ) ) = ( S - ( 1 / k ) ) ) |
| 10 | ovex | |- ( S - ( 1 / k ) ) e. _V |
|
| 11 | 9 3 10 | fvmpt | |- ( k e. NN -> ( R ` k ) = ( S - ( 1 / k ) ) ) |
| 12 | 11 | adantl | |- ( ( ph /\ k e. NN ) -> ( R ` k ) = ( S - ( 1 / k ) ) ) |
| 13 | fof | |- ( F : X -onto-> A -> F : X --> A ) |
|
| 14 | 5 13 | syl | |- ( ph -> F : X --> A ) |
| 15 | feq3 | |- ( A = (/) -> ( F : X --> A <-> F : X --> (/) ) ) |
|
| 16 | 14 15 | syl5ibcom | |- ( ph -> ( A = (/) -> F : X --> (/) ) ) |
| 17 | f00 | |- ( F : X --> (/) <-> ( F = (/) /\ X = (/) ) ) |
|
| 18 | 17 | simprbi | |- ( F : X --> (/) -> X = (/) ) |
| 19 | 16 18 | syl6 | |- ( ph -> ( A = (/) -> X = (/) ) ) |
| 20 | 19 | necon3d | |- ( ph -> ( X =/= (/) -> A =/= (/) ) ) |
| 21 | 4 20 | mpd | |- ( ph -> A =/= (/) ) |
| 22 | 6 21 7 | suprcld | |- ( ph -> sup ( A , RR , < ) e. RR ) |
| 23 | 2 22 | eqeltrid | |- ( ph -> S e. RR ) |
| 24 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 25 | 24 | rpreccld | |- ( k e. NN -> ( 1 / k ) e. RR+ ) |
| 26 | ltsubrp | |- ( ( S e. RR /\ ( 1 / k ) e. RR+ ) -> ( S - ( 1 / k ) ) < S ) |
|
| 27 | 23 25 26 | syl2an | |- ( ( ph /\ k e. NN ) -> ( S - ( 1 / k ) ) < S ) |
| 28 | 12 27 | eqbrtrd | |- ( ( ph /\ k e. NN ) -> ( R ` k ) < S ) |
| 29 | 28 2 | breqtrdi | |- ( ( ph /\ k e. NN ) -> ( R ` k ) < sup ( A , RR , < ) ) |
| 30 | 6 21 7 | 3jca | |- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 31 | nnrecre | |- ( n e. NN -> ( 1 / n ) e. RR ) |
|
| 32 | resubcl | |- ( ( S e. RR /\ ( 1 / n ) e. RR ) -> ( S - ( 1 / n ) ) e. RR ) |
|
| 33 | 23 31 32 | syl2an | |- ( ( ph /\ n e. NN ) -> ( S - ( 1 / n ) ) e. RR ) |
| 34 | 33 3 | fmptd | |- ( ph -> R : NN --> RR ) |
| 35 | 34 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( R ` k ) e. RR ) |
| 36 | suprlub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( R ` k ) e. RR ) -> ( ( R ` k ) < sup ( A , RR , < ) <-> E. z e. A ( R ` k ) < z ) ) |
|
| 37 | 30 35 36 | syl2an2r | |- ( ( ph /\ k e. NN ) -> ( ( R ` k ) < sup ( A , RR , < ) <-> E. z e. A ( R ` k ) < z ) ) |
| 38 | 29 37 | mpbid | |- ( ( ph /\ k e. NN ) -> E. z e. A ( R ` k ) < z ) |
| 39 | 6 | adantr | |- ( ( ph /\ k e. NN ) -> A C_ RR ) |
| 40 | 39 | sselda | |- ( ( ( ph /\ k e. NN ) /\ z e. A ) -> z e. RR ) |
| 41 | ltle | |- ( ( ( R ` k ) e. RR /\ z e. RR ) -> ( ( R ` k ) < z -> ( R ` k ) <_ z ) ) |
|
| 42 | 35 40 41 | syl2an2r | |- ( ( ( ph /\ k e. NN ) /\ z e. A ) -> ( ( R ` k ) < z -> ( R ` k ) <_ z ) ) |
| 43 | 42 | reximdva | |- ( ( ph /\ k e. NN ) -> ( E. z e. A ( R ` k ) < z -> E. z e. A ( R ` k ) <_ z ) ) |
| 44 | 38 43 | mpd | |- ( ( ph /\ k e. NN ) -> E. z e. A ( R ` k ) <_ z ) |
| 45 | forn | |- ( F : X -onto-> A -> ran F = A ) |
|
| 46 | 5 45 | syl | |- ( ph -> ran F = A ) |
| 47 | 46 | rexeqdv | |- ( ph -> ( E. z e. ran F ( R ` k ) <_ z <-> E. z e. A ( R ` k ) <_ z ) ) |
| 48 | ffn | |- ( F : X --> A -> F Fn X ) |
|
| 49 | breq2 | |- ( z = ( F ` x ) -> ( ( R ` k ) <_ z <-> ( R ` k ) <_ ( F ` x ) ) ) |
|
| 50 | 49 | rexrn | |- ( F Fn X -> ( E. z e. ran F ( R ` k ) <_ z <-> E. x e. X ( R ` k ) <_ ( F ` x ) ) ) |
| 51 | 14 48 50 | 3syl | |- ( ph -> ( E. z e. ran F ( R ` k ) <_ z <-> E. x e. X ( R ` k ) <_ ( F ` x ) ) ) |
| 52 | 47 51 | bitr3d | |- ( ph -> ( E. z e. A ( R ` k ) <_ z <-> E. x e. X ( R ` k ) <_ ( F ` x ) ) ) |
| 53 | 52 | adantr | |- ( ( ph /\ k e. NN ) -> ( E. z e. A ( R ` k ) <_ z <-> E. x e. X ( R ` k ) <_ ( F ` x ) ) ) |
| 54 | 44 53 | mpbid | |- ( ( ph /\ k e. NN ) -> E. x e. X ( R ` k ) <_ ( F ` x ) ) |
| 55 | 54 | ralrimiva | |- ( ph -> A. k e. NN E. x e. X ( R ` k ) <_ ( F ` x ) ) |
| 56 | nnenom | |- NN ~~ _om |
|
| 57 | fveq2 | |- ( x = ( f ` k ) -> ( F ` x ) = ( F ` ( f ` k ) ) ) |
|
| 58 | 57 | breq2d | |- ( x = ( f ` k ) -> ( ( R ` k ) <_ ( F ` x ) <-> ( R ` k ) <_ ( F ` ( f ` k ) ) ) ) |
| 59 | 1 56 58 | axcc4 | |- ( A. k e. NN E. x e. X ( R ` k ) <_ ( F ` x ) -> E. f ( f : NN --> X /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) ) |
| 60 | 55 59 | syl | |- ( ph -> E. f ( f : NN --> X /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) ) |
| 61 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 62 | 1zzd | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> 1 e. ZZ ) |
|
| 63 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 64 | 23 | recnd | |- ( ph -> S e. CC ) |
| 65 | 1z | |- 1 e. ZZ |
|
| 66 | 61 | eqimss2i | |- ( ZZ>= ` 1 ) C_ NN |
| 67 | nnex | |- NN e. _V |
|
| 68 | 66 67 | climconst2 | |- ( ( S e. CC /\ 1 e. ZZ ) -> ( NN X. { S } ) ~~> S ) |
| 69 | 64 65 68 | sylancl | |- ( ph -> ( NN X. { S } ) ~~> S ) |
| 70 | 67 | mptex | |- ( n e. NN |-> ( S - ( 1 / n ) ) ) e. _V |
| 71 | 3 70 | eqeltri | |- R e. _V |
| 72 | 71 | a1i | |- ( ph -> R e. _V ) |
| 73 | ax-1cn | |- 1 e. CC |
|
| 74 | divcnv | |- ( 1 e. CC -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
|
| 75 | 73 74 | mp1i | |- ( ph -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
| 76 | fvconst2g | |- ( ( S e. RR /\ k e. NN ) -> ( ( NN X. { S } ) ` k ) = S ) |
|
| 77 | 23 76 | sylan | |- ( ( ph /\ k e. NN ) -> ( ( NN X. { S } ) ` k ) = S ) |
| 78 | 64 | adantr | |- ( ( ph /\ k e. NN ) -> S e. CC ) |
| 79 | 77 78 | eqeltrd | |- ( ( ph /\ k e. NN ) -> ( ( NN X. { S } ) ` k ) e. CC ) |
| 80 | eqid | |- ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) |
|
| 81 | ovex | |- ( 1 / k ) e. _V |
|
| 82 | 8 80 81 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) |
| 83 | 82 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) |
| 84 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 85 | 84 | recnd | |- ( k e. NN -> ( 1 / k ) e. CC ) |
| 86 | 85 | adantl | |- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. CC ) |
| 87 | 83 86 | eqeltrd | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) e. CC ) |
| 88 | 77 83 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( ( ( NN X. { S } ) ` k ) - ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) = ( S - ( 1 / k ) ) ) |
| 89 | 12 88 | eqtr4d | |- ( ( ph /\ k e. NN ) -> ( R ` k ) = ( ( ( NN X. { S } ) ` k ) - ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) ) |
| 90 | 61 63 69 72 75 79 87 89 | climsub | |- ( ph -> R ~~> ( S - 0 ) ) |
| 91 | 64 | subid1d | |- ( ph -> ( S - 0 ) = S ) |
| 92 | 90 91 | breqtrd | |- ( ph -> R ~~> S ) |
| 93 | 92 | ad2antrr | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> R ~~> S ) |
| 94 | 14 | ad2antrr | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> F : X --> A ) |
| 95 | fex | |- ( ( F : X --> A /\ X e. _V ) -> F e. _V ) |
|
| 96 | 94 1 95 | sylancl | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> F e. _V ) |
| 97 | vex | |- f e. _V |
|
| 98 | coexg | |- ( ( F e. _V /\ f e. _V ) -> ( F o. f ) e. _V ) |
|
| 99 | 96 97 98 | sylancl | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> ( F o. f ) e. _V ) |
| 100 | 34 | ad2antrr | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> R : NN --> RR ) |
| 101 | 100 | ffvelcdmda | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( R ` m ) e. RR ) |
| 102 | 14 6 | fssd | |- ( ph -> F : X --> RR ) |
| 103 | fco | |- ( ( F : X --> RR /\ f : NN --> X ) -> ( F o. f ) : NN --> RR ) |
|
| 104 | 102 103 | sylan | |- ( ( ph /\ f : NN --> X ) -> ( F o. f ) : NN --> RR ) |
| 105 | 104 | adantr | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> ( F o. f ) : NN --> RR ) |
| 106 | 105 | ffvelcdmda | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( ( F o. f ) ` m ) e. RR ) |
| 107 | fveq2 | |- ( k = m -> ( R ` k ) = ( R ` m ) ) |
|
| 108 | 2fveq3 | |- ( k = m -> ( F ` ( f ` k ) ) = ( F ` ( f ` m ) ) ) |
|
| 109 | 107 108 | breq12d | |- ( k = m -> ( ( R ` k ) <_ ( F ` ( f ` k ) ) <-> ( R ` m ) <_ ( F ` ( f ` m ) ) ) ) |
| 110 | 109 | rspccva | |- ( ( A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) /\ m e. NN ) -> ( R ` m ) <_ ( F ` ( f ` m ) ) ) |
| 111 | 110 | adantll | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( R ` m ) <_ ( F ` ( f ` m ) ) ) |
| 112 | simplr | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> f : NN --> X ) |
|
| 113 | fvco3 | |- ( ( f : NN --> X /\ m e. NN ) -> ( ( F o. f ) ` m ) = ( F ` ( f ` m ) ) ) |
|
| 114 | 112 113 | sylan | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( ( F o. f ) ` m ) = ( F ` ( f ` m ) ) ) |
| 115 | 111 114 | breqtrrd | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( R ` m ) <_ ( ( F o. f ) ` m ) ) |
| 116 | 30 | ad3antrrr | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 117 | 112 | ffvelcdmda | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( f ` m ) e. X ) |
| 118 | 94 | ffvelcdmda | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ ( f ` m ) e. X ) -> ( F ` ( f ` m ) ) e. A ) |
| 119 | 117 118 | syldan | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( F ` ( f ` m ) ) e. A ) |
| 120 | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( F ` ( f ` m ) ) e. A ) -> ( F ` ( f ` m ) ) <_ sup ( A , RR , < ) ) |
|
| 121 | 116 119 120 | syl2anc | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( F ` ( f ` m ) ) <_ sup ( A , RR , < ) ) |
| 122 | 121 2 | breqtrrdi | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( F ` ( f ` m ) ) <_ S ) |
| 123 | 114 122 | eqbrtrd | |- ( ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) /\ m e. NN ) -> ( ( F o. f ) ` m ) <_ S ) |
| 124 | 61 62 93 99 101 106 115 123 | climsqz | |- ( ( ( ph /\ f : NN --> X ) /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> ( F o. f ) ~~> S ) |
| 125 | 124 | ex | |- ( ( ph /\ f : NN --> X ) -> ( A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) -> ( F o. f ) ~~> S ) ) |
| 126 | 125 | imdistanda | |- ( ph -> ( ( f : NN --> X /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> ( f : NN --> X /\ ( F o. f ) ~~> S ) ) ) |
| 127 | 126 | eximdv | |- ( ph -> ( E. f ( f : NN --> X /\ A. k e. NN ( R ` k ) <_ ( F ` ( f ` k ) ) ) -> E. f ( f : NN --> X /\ ( F o. f ) ~~> S ) ) ) |
| 128 | 60 127 | mpd | |- ( ph -> E. f ( f : NN --> X /\ ( F o. f ) ~~> S ) ) |