This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of findcard2 . (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard2d.ch | ⊢ ( 𝑥 = ∅ → ( 𝜓 ↔ 𝜒 ) ) | |
| findcard2d.th | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) | ||
| findcard2d.ta | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝜓 ↔ 𝜏 ) ) | ||
| findcard2d.et | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) | ||
| findcard2d.z | ⊢ ( 𝜑 → 𝜒 ) | ||
| findcard2d.i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝜃 → 𝜏 ) ) | ||
| findcard2d.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| Assertion | findcard2d | ⊢ ( 𝜑 → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard2d.ch | ⊢ ( 𝑥 = ∅ → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | findcard2d.th | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | findcard2d.ta | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝜓 ↔ 𝜏 ) ) | |
| 4 | findcard2d.et | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) | |
| 5 | findcard2d.z | ⊢ ( 𝜑 → 𝜒 ) | |
| 6 | findcard2d.i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝜃 → 𝜏 ) ) | |
| 7 | findcard2d.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 8 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 9 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 10 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 11 | 10 | anbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐴 ) ) ) |
| 12 | 11 1 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → 𝜒 ) ) ) |
| 13 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ) ) |
| 15 | 14 2 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝜃 ) ) ) |
| 16 | sseq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) | |
| 17 | 16 | anbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) ) |
| 18 | 17 3 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → 𝜏 ) ) ) |
| 19 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 20 | 19 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) ) |
| 21 | 20 4 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝜂 ) ) ) |
| 22 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → 𝜒 ) |
| 23 | simprl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝜑 ) | |
| 24 | simprr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 25 | 24 | unssad | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑦 ⊆ 𝐴 ) |
| 26 | 23 25 | jca | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ) |
| 27 | id | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 28 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 29 | elun2 | ⊢ ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 30 | 28 29 | mp1i | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 31 | 27 30 | sseldd | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑧 ∈ 𝐴 ) |
| 32 | 31 | ad2antll | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
| 33 | simplr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 34 | 32 33 | eldifd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) |
| 35 | 23 25 34 6 | syl12anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝜃 → 𝜏 ) ) |
| 36 | 26 35 | embantd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝜃 ) → 𝜏 ) ) |
| 37 | 36 | ex | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝜃 ) → 𝜏 ) ) ) |
| 38 | 37 | com23 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝜃 ) → ( ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → 𝜏 ) ) ) |
| 39 | 12 15 18 21 22 38 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝜂 ) ) |
| 40 | 9 39 | mpcom | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝜂 ) |
| 41 | 8 40 | mpan2 | ⊢ ( 𝜑 → 𝜂 ) |