This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018) (Revised by AV, 17-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsumsplitsnun | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 = ( Σ 𝑘 ∈ 𝐴 𝐵 + ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | ⊢ ( 𝑍 ∉ 𝐴 ↔ ¬ 𝑍 ∈ 𝐴 ) | |
| 2 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑍 } ) = ∅ ↔ ¬ 𝑍 ∈ 𝐴 ) | |
| 3 | 1 2 | sylbb2 | ⊢ ( 𝑍 ∉ 𝐴 → ( 𝐴 ∩ { 𝑍 } ) = ∅ ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) → ( 𝐴 ∩ { 𝑍 } ) = ∅ ) |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ( 𝐴 ∩ { 𝑍 } ) = ∅ ) |
| 6 | eqidd | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ( 𝐴 ∪ { 𝑍 } ) = ( 𝐴 ∪ { 𝑍 } ) ) | |
| 7 | snfi | ⊢ { 𝑍 } ∈ Fin | |
| 8 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑍 } ∈ Fin ) → ( 𝐴 ∪ { 𝑍 } ) ∈ Fin ) | |
| 9 | 7 8 | mpan2 | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∪ { 𝑍 } ) ∈ Fin ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ( 𝐴 ∪ { 𝑍 } ) ∈ Fin ) |
| 11 | rspcsbela | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) | |
| 12 | 11 | expcom | ⊢ ( ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ → ( 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ( 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 15 | 14 | zcnd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 16 | 5 6 10 15 | fsumsplit | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → Σ 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ⦋ 𝑥 / 𝑘 ⦌ 𝐵 = ( Σ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 + Σ 𝑥 ∈ { 𝑍 } ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ) ) |
| 17 | csbeq1a | ⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ) | |
| 18 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 19 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 | |
| 20 | 17 18 19 | cbvsum | ⊢ Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 = Σ 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ⦋ 𝑥 / 𝑘 ⦌ 𝐵 |
| 21 | 17 18 19 | cbvsum | ⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 |
| 22 | 17 18 19 | cbvsum | ⊢ Σ 𝑘 ∈ { 𝑍 } 𝐵 = Σ 𝑥 ∈ { 𝑍 } ⦋ 𝑥 / 𝑘 ⦌ 𝐵 |
| 23 | 21 22 | oveq12i | ⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ { 𝑍 } 𝐵 ) = ( Σ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 + Σ 𝑥 ∈ { 𝑍 } ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ) |
| 24 | 16 20 23 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ { 𝑍 } 𝐵 ) ) |
| 25 | simp2l | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → 𝑍 ∈ 𝑉 ) | |
| 26 | snidg | ⊢ ( 𝑍 ∈ 𝑉 → 𝑍 ∈ { 𝑍 } ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) → 𝑍 ∈ { 𝑍 } ) |
| 28 | 27 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → 𝑍 ∈ { 𝑍 } ) |
| 29 | elun2 | ⊢ ( 𝑍 ∈ { 𝑍 } → 𝑍 ∈ ( 𝐴 ∪ { 𝑍 } ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → 𝑍 ∈ ( 𝐴 ∪ { 𝑍 } ) ) |
| 31 | simp3 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) | |
| 32 | rspcsbela | ⊢ ( ( 𝑍 ∈ ( 𝐴 ∪ { 𝑍 } ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ∈ ℤ ) | |
| 33 | 30 31 32 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 34 | 33 | zcnd | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 35 | sumsns | ⊢ ( ( 𝑍 ∈ 𝑉 ∧ ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑍 } 𝐵 = ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ) | |
| 36 | 25 34 35 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ { 𝑍 } 𝐵 = ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ { 𝑍 } 𝐵 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ) ) |
| 38 | 24 37 | eqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴 ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 = ( Σ 𝑘 ∈ 𝐴 𝐵 + ⦋ 𝑍 / 𝑘 ⦌ 𝐵 ) ) |